File size: 12,034 Bytes
55c16a9 4620163 55c16a9 6e3708f 3122b84 6e3708f a76c3d5 6e3708f 4620163 6e3708f 55c16a9 126e658 379061a 55c16a9 379061a 55c16a9 379061a 55c16a9 379061a 55c16a9 379061a 55c16a9 379061a 55c16a9 379061a 126e658 55c16a9 379061a 016349c 379061a 016349c 379061a 55c16a9 016349c 55c16a9 379061a 4620163 58eefb4 4620163 18ad996 379061a dde35d6 8ac6367 379061a 4620163 d0d6473 4620163 d0d6473 4620163 379061a dde35d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import torch
import numpy as np
import pandas as pd
import gradio as gr
import tempfile
import subprocess
from matplotlib.animation import FFMpegWriter, PillowWriter
import matplotlib.pyplot as plt
from matplotlib import animation
from config import MAX_TEXT_LEN
from data import selective_smoothing, GLOBAL_MEAN_T, GLOBAL_STD_T
from model import TextToPoseSeq2Seq
from transformers import BertTokenizer
#whisper
from faster_whisper import WhisperModel
# === Tokenizer and Model Init ===
tokenizer = BertTokenizer.from_pretrained("indobenchmark/indobert-base-p2")
# === Check FFmpeg availability ===
print("FFmpeg check:", subprocess.run(["ffmpeg", "-version"], capture_output=True).stdout.decode().splitlines()[0])
# === Load model ===
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = TextToPoseSeq2Seq(tokenizer.vocab_size).to(device)
model.load_state_dict(torch.load("best_seq2seq_model_mask.pth", map_location=device))
model.to(device)
print("Loaded pretrained weights.")
# === Load annotated.csv ===
annot_df = pd.read_csv("annotated.csv")
annotated_words = set(annot_df["text"].str.strip().str.lower().unique())
# Load the final annotated CSV with video links
video_df = pd.read_csv("annotated_vid_link.csv")
video_df["text_clean"] = video_df["text"].str.strip().str.lower()
video_lookup = dict(zip(video_df["text_clean"], video_df["Video URL"]))
# === Load Whisper ===
whisper_model = WhisperModel("small", compute_type="int8")
def transcribe_audio(audio_path):
try:
segments, _ = whisper_model.transcribe(audio_path, language="ms", beam_size=5)
full_text = " ".join([segment.text.strip() for segment in segments])
return full_text.strip()
except Exception as e:
print("Whisper Error:", e)
return ""
def get_youtube_link(input_text):
return video_lookup.get(input_text.strip().lower())
# === Keypoint setup ===
selected_keypoint_indices = list(np.r_[0:25, 501:522, 522:543])
NUM_KEYPOINTS = len(selected_keypoint_indices)
POSE_DIM = NUM_KEYPOINTS * 3
# === Connection graph ===
mediapipe_connections = [
(0, 1), (1, 2), (2, 3), (3, 7), (0, 4), (4, 5), (5, 6), (6, 8),
(9, 10), (11, 12), (12, 14), (14, 16), (11, 13), (13, 15),
(23, 24), (11, 23), (12, 24)
]
def add_hand_connections(base_index):
return [(base_index + i, base_index + j) for i, j in [
(0,1), (1,2), (2,3), (3,4),
(0,5), (5,6), (6,7), (7,8),
(0,9), (9,10), (10,11), (11,12),
(0,13), (13,14), (14,15), (15,16),
(0,17), (17,18), (18,19), (19,20)
]]
hand1 = selected_keypoint_indices.index(501)
hand2 = selected_keypoint_indices.index(522)
mediapipe_connections += add_hand_connections(hand1)
mediapipe_connections += add_hand_connections(hand2)
# === Pose inference ===
def concatenate_and_smooth_sequences(sentence, tokenizer, model, device, GLOBAL_MEAN_T, GLOBAL_STD_T):
sentence = sentence.strip()
if sentence.lower() in annotated_words:
words = [sentence]
else:
words = sentence.split()
pose_preds, conf_preds, frame_labels = [], [], []
current_frame = 0
model.eval()
with torch.no_grad():
for word in words:
inputs = tokenizer(word, padding="max_length", truncation=True, max_length=MAX_TEXT_LEN, return_tensors="pt")
input_ids = inputs.input_ids.to(device)
attn_mask = inputs.attention_mask.to(device)
pred_pose_norm, pred_conf = model(input_ids, attention_mask=attn_mask)
T = pred_pose_norm.shape[1]
pose_preds.append(pred_pose_norm[0])
conf_preds.append(pred_conf[0])
frame_labels.append((word, current_frame, current_frame + T - 1))
current_frame += T
if not pose_preds:
return None, None, None
full_pose = torch.cat(pose_preds, dim=0).unsqueeze(0)
full_conf = torch.cat(conf_preds, dim=0)
smoothed = selective_smoothing(full_pose).squeeze(0)
unnormalized = smoothed * GLOBAL_STD_T + GLOBAL_MEAN_T
return unnormalized.view(-1, NUM_KEYPOINTS, 3).cpu().numpy(), full_conf.cpu().numpy(), frame_labels
# === Animation ===
def animate_pose(pred_pose, pred_conf=None, frame_labels=None, interval=150, conf_threshold=0.3):
fig, ax = plt.subplots(figsize=(5, 5))
fig.subplots_adjust(top=0.85)
def setup():
all_x, all_y = pred_pose[:,:,0].flatten(), pred_pose[:,:,1].flatten()
x_buf = (all_x.max() - all_x.min()) * 0.1 + 0.1
y_buf = (all_y.max() - all_y.min()) * 0.1 + 0.1
ax.set_xlim(all_x.min() - x_buf, all_x.max() + x_buf)
ax.set_ylim(-all_y.max() - y_buf, -all_y.min() + y_buf)
ax.set_aspect('equal')
ax.axis('off')
setup()
pred_lines = [ax.plot([], [], color='red', lw=2)[0] for _ in mediapipe_connections]
pred_pts = ax.plot([], [], 'ko', markersize=3)[0]
def init():
for line in pred_lines: line.set_data([], [])
pred_pts.set_data([], [])
return pred_lines + [pred_pts]
def update(frame):
px, py = pred_pose[frame,:,0], -pred_pose[frame,:,1]
if pred_conf is not None:
mask = pred_conf[frame] > conf_threshold
px[~mask], py[~mask] = np.nan, np.nan
pred_pts.set_data(px, py)
for text in ax.texts: text.remove()
for i in range(NUM_KEYPOINTS):
ax.text(px[i], py[i], str(i), fontsize=5, color='black')
for i, (start, end) in enumerate(mediapipe_connections):
if pred_conf is None or (pred_conf[frame][start] > conf_threshold and pred_conf[frame][end] > conf_threshold):
pred_lines[i].set_data([px[start], px[end]], [py[start], py[end]])
else:
pred_lines[i].set_data([], [])
if frame_labels:
for word, start, end in frame_labels:
if start <= frame <= end:
ax.set_title(f'Prediction: β{word}β (Frames {start}β{end})', fontsize=12, pad=15)
break
return pred_lines + [pred_pts]
ani = animation.FuncAnimation(fig, update, frames=len(pred_pose), init_func=init, blit=True, interval=interval)
plt.tight_layout(pad=2.0)
return ani
# === Save video or fallback to GIF ===
def save_animation(anim, format="mp4"):
try:
ext = ".mp4" if format == "mp4" else ".gif"
writer = FFMpegWriter(fps=10, bitrate=1800) if format == "mp4" else PillowWriter(fps=10)
with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as f:
path = f.name
anim.save(path, writer=writer)
return path
except Exception as e:
print(f"{format.upper()} save failed:", e)
return None
def find_all_matches(text, video_lookup):
words = text.strip().lower().split()
matched = []
i = 0
while i < len(words):
found = False
# Try trigram
if i + 2 < len(words):
phrase3 = " ".join(words[i:i+3])
if phrase3 in video_lookup:
matched.append((phrase3, video_lookup[phrase3]))
i += 3
found = True
continue
# Try bigram
if i + 1 < len(words):
phrase2 = " ".join(words[i:i+2])
if phrase2 in video_lookup:
matched.append((phrase2, video_lookup[phrase2]))
i += 2
found = True
continue
# Try unigram
word = words[i]
if word in video_lookup:
matched.append((word, video_lookup[word]))
else:
matched.append((word, None)) # not in lookup
i += 1
return matched
def predict(text, threshold, show_videos=True):
if not text.strip():
return None, "β οΈ Please enter valid text.", ""
try:
pose, conf, labels = concatenate_and_smooth_sequences(text, tokenizer, model, device, GLOBAL_MEAN_T, GLOBAL_STD_T)
if pose is None: return None, "β οΈ No pose predicted.", ""
anim = animate_pose(pose, pred_conf=conf, frame_labels=labels, conf_threshold=threshold)
path = save_animation(anim, format="mp4") or save_animation(anim, format="gif")
if not path:
return None, "β Failed to save animation.", ""
# === Generate Text Output + Video Preview ===
cleaned_text = text.strip().lower()
result_text, video_html = build_result_with_video_links(cleaned_text, video_lookup, show_videos)
return path, result_text, video_html
except Exception as e:
print("Error during prediction:", e)
return None, f"β Runtime error: {str(e)}", ""
def build_result_with_video_links(cleaned_text, video_lookup, show_videos=True):
checks = ["**Match Check (Phrase + Word Level):**"]
html_blocks = []
if cleaned_text in video_lookup:
checks.append(f'- β{cleaned_text}β β
in dataset')
if show_videos:
url = video_lookup[cleaned_text]
video_id = url.split("v=")[-1]
html_blocks.append(
f'<iframe width="480" height="270" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allowfullscreen></iframe>'
)
else:
checks.append(f'- β{cleaned_text}β β οΈ not in dataset β broken into words')
for word in cleaned_text.split():
if word in annotated_words:
checks.append(f' - β{word}β β
in dataset')
if show_videos and word in video_lookup:
url = video_lookup[word]
video_id = url.split("v=")[-1]
html_blocks.append(
f'<iframe width="240" height="135" src="https://www.youtube.com/embed/{video_id}" frameborder="0" allowfullscreen></iframe>'
)
else:
checks.append(f' - β{word}β β not found β generated by approximation')
return "\n".join(checks), "<br>".join(html_blocks) if show_videos else ""
# === Gradio UI ===
with gr.Blocks() as demo:
gr.Markdown("# Text-to-Malay Sign Pose Generator")
gr.Markdown("Generate Malaysian Sign Language (BIM) pose animation from Malay text. Checks which words were seen in training and shows reference YouTube video (if available).")
with gr.Row():
with gr.Column(scale=1):
with gr.Tab("Text Input"): #whisper
text_input = gr.Textbox(label="Enter Malay Word or Sentence")
with gr.Tab("Speech Input"):
audio_input = gr.Audio(type="filepath", label="Upload or Record Malay Audio")
audio_transcript = gr.Textbox(label="Transcribed Text", interactive=True)
transcribe_btn = gr.Button("Transcribe") #whisper
threshold_slider = gr.Slider(0.0, 1.0, value=0.05, step=0.05, label="Confidence Threshold (for displaying joints)")
show_video_toggle = gr.Checkbox(label="Show Video Previews", value=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.Button("Clear")
with gr.Column(scale=1):
video_output = gr.Video(label="Generated Pose Animation", height=270)
text_output = gr.Markdown(label="Match Check (Phrase + Word Level):")
youtube_output = gr.HTML()
submit_btn.click(fn=predict,
inputs=[text_input, threshold_slider, show_video_toggle],
outputs=[video_output, text_output, youtube_output])
transcribe_btn.click(fn=transcribe_audio,
inputs=audio_input, outputs=audio_transcript)
audio_transcript.change(fn=predict,
inputs=[audio_transcript, threshold_slider, show_video_toggle],
outputs=[video_output, text_output, youtube_output])
clear_btn.click(lambda: ("", "", ""),
inputs=[],
outputs=[video_output, text_output, youtube_output])
demo.launch(debug=True) |