File size: 4,982 Bytes
33c0fae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from einops import rearrange
from torchvision import models
import math
import torch
from torch import nn

class LanguageTransformer(nn.Module):
    def __init__(self, vocab_size, 

                 d_model, nhead, 

                 num_encoder_layers, num_decoder_layers, 

                 dim_feedforward, max_seq_length, 

                 pos_dropout, trans_dropout):
        super().__init__()
        
        self.d_model = d_model
        self.embed_tgt = nn.Embedding(vocab_size, d_model)
        self.pos_enc = PositionalEncoding(d_model, pos_dropout, max_seq_length)
#        self.learned_pos_enc = LearnedPositionalEncoding(d_model, pos_dropout, max_seq_length)

        self.transformer = nn.Transformer(d_model, nhead, 
                                          num_encoder_layers, num_decoder_layers, 
                                          dim_feedforward, trans_dropout)
        
        self.fc = nn.Linear(d_model, vocab_size)
        
    def forward(self, src, tgt, src_key_padding_mask=None, tgt_key_padding_mask=None, memory_key_padding_mask=None):
        """

        Shape:

            - src: (W, N, C)

            - tgt: (T, N) 

            - src_key_padding_mask: (N, S)

            - tgt_key_padding_mask: (N, T)

            - memory_key_padding_mask: (N, S)

            - output: (N, T, E)

            

        """
        tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(src.device)
        
        src = self.pos_enc(src*math.sqrt(self.d_model))
#        src = self.learned_pos_enc(src*math.sqrt(self.d_model))

        tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
        
        output = self.transformer(src, tgt, tgt_mask=tgt_mask, src_key_padding_mask=src_key_padding_mask,
                                  tgt_key_padding_mask=tgt_key_padding_mask, memory_key_padding_mask=memory_key_padding_mask)
#        output = rearrange(output, 't n e -> n t e')
        output = output.transpose(0, 1)
        return self.fc(output)

    def gen_nopeek_mask(self, length):
        mask = (torch.triu(torch.ones(length, length)) == 1).transpose(0, 1)
        mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.0))

        return mask
    
    def forward_encoder(self, src):
        src = self.pos_enc(src*math.sqrt(self.d_model))
        memory = self.transformer.encoder(src)
        return memory
    
    def forward_decoder(self, tgt, memory):
        tgt_mask = self.gen_nopeek_mask(tgt.shape[0]).to(tgt.device)
        tgt = self.pos_enc(self.embed_tgt(tgt) * math.sqrt(self.d_model))
        
        output = self.transformer.decoder(tgt, memory, tgt_mask=tgt_mask)
#        output = rearrange(output, 't n e -> n t e')
        output = output.transpose(0, 1)

        return self.fc(output), memory
    
    def expand_memory(self, memory, beam_size):
        memory = memory.repeat(1, beam_size, 1)
        return memory
    
    def get_memory(self, memory, i):
        memory = memory[:, [i], :]
        return memory

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=100):
        super(PositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        pe = pe.unsqueeze(0).transpose(0, 1)
        self.register_buffer('pe', pe)

    def forward(self, x):
        x = x + self.pe[:x.size(0), :]

        return self.dropout(x)
 
class LearnedPositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=100):
        super(LearnedPositionalEncoding, self).__init__()
        self.dropout = nn.Dropout(p=dropout)

        self.pos_embed = nn.Embedding(max_len, d_model)
        self.layernorm = LayerNorm(d_model)

    def forward(self, x):
        seq_len = x.size(0)
        pos = torch.arange(seq_len, dtype=torch.long, device=x.device)
        pos = pos.unsqueeze(-1).expand(x.size()[:2])
        x = x + self.pos_embed(pos)
        return self.dropout(self.layernorm(x))

class LayerNorm(nn.Module):
    "A layernorm module in the TF style (epsilon inside the square root)."
    def __init__(self, d_model, variance_epsilon=1e-12):
        super().__init__()
        self.gamma = nn.Parameter(torch.ones(d_model))
        self.beta  = nn.Parameter(torch.zeros(d_model))
        self.variance_epsilon = variance_epsilon

    def forward(self, x):
        u = x.mean(-1, keepdim=True)
        s = (x - u).pow(2).mean(-1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.variance_epsilon)
        return self.gamma * x + self.beta