Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,272 Bytes
2ec72fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
import os
import json
import random
from tqdm import tqdm
import numpy as np
from PIL import Image, ImageStat
import torch
from torch.utils.data import Dataset, DataLoader, IterableDataset, get_worker_info
from torchvision import transforms as T
### >>>>>>>> >>>>>>>> text related >>>>>>>> >>>>>>>> ###
class TokenizerWrapper():
def __init__(self, tokenizer, is_train, proportion_empty_prompts, use_generic_prompts=False):
self.tokenizer = tokenizer
self.is_train = is_train
self.proportion_empty_prompts = proportion_empty_prompts
self.use_generic_prompts = use_generic_prompts
def __call__(self, prompts):
if isinstance(prompts, str):
prompts = [prompts]
captions = []
for caption in prompts:
if random.random() < self.proportion_empty_prompts:
captions.append("")
else:
if self.use_generic_prompts:
captions.append("best quality, high quality")
elif isinstance(caption, str):
captions.append(caption)
elif isinstance(caption, (list, np.ndarray)):
# take a random caption if there are multiple
captions.append(random.choice(caption) if self.is_train else caption[0])
else:
raise ValueError(
f"Caption column should contain either strings or lists of strings."
)
inputs = self.tokenizer(
captions, max_length=self.tokenizer.model_max_length, padding="max_length",
truncation=True, return_tensors="pt"
)
return inputs.input_ids
### >>>>>>>> >>>>>>>> image related >>>>>>>> >>>>>>>> ###
MONOCHROMATIC_MAX_VARIANCE = 0.3
def is_monochromatic_image(pil_img):
v = ImageStat.Stat(pil_img.convert('RGB')).var
return sum(v)<MONOCHROMATIC_MAX_VARIANCE
def isnumeric(text):
return (''.join(filter(str.isalnum, text))).isnumeric()
class TextPromptDataset(IterableDataset):
'''
The dataset for (text embedding, noise, generated latent) triplets.
'''
def __init__(self,
data_root,
tokenizer = None,
transform = None,
rank = 0,
world_size = 1,
shuffle = True,
):
self.tokenizer = tokenizer
self.transform = transform
self.img_root = os.path.join(data_root, 'JPEGImages')
self.data_list = []
print("#### Loading filename list...")
json_root = os.path.join(data_root, 'list')
json_list = [p for p in os.listdir(json_root) if p.startswith("shard") and p.endswith('.json')]
# duplicate several shards to make sure each process has the same number of shards
assert len(json_list) > world_size
duplicate = world_size - len(json_list)%world_size if len(json_list)%world_size>0 else 0
json_list = json_list + json_list[:duplicate]
json_list = json_list[rank::world_size]
for json_file in tqdm(json_list):
shard_name = os.path.basename(json_file).split('.')[0]
with open(os.path.join(json_root, json_file)) as f:
key_text_pairs = json.load(f)
for pair in key_text_pairs:
self.data_list.append( [shard_name] + pair )
print("#### All filename loaded...")
self.shuffle = shuffle
def __len__(self):
return len(self.data_list)
def __iter__(self):
worker_info = get_worker_info()
if worker_info is None: # single-process data loading, return the full iterator
data_list = self.data_list
else:
len_data = len(self.data_list) - len(self.data_list) % worker_info.num_workers
data_list = self.data_list[:len_data][worker_info.id :: worker_info.num_workers]
# print(worker_info.num_workers, worker_info.id, len(data_list)/len(self.data_list))
if self.shuffle:
random.shuffle(data_list)
while True:
for idx in range(len(data_list)):
# try:
shard_name = data_list[idx][0]
data = {}
img_file = data_list[idx][1]
img = Image.open(os.path.join(self.img_root, shard_name, img_file+'.jpg')).convert("RGB")
if is_monochromatic_image(img):
continue
if self.transform is not None:
img = self.transform(img)
data['pixel_values'] = img
text = data_list[idx][2]
if self.tokenizer is not None:
if isinstance(self.tokenizer, list):
assert len(self.tokenizer)==2
data['input_ids'] = self.tokenizer[0](text)[0]
data['input_ids_2'] = self.tokenizer[1](text)[0]
else:
data['input_ids'] = self.tokenizer(text)[0]
else:
data['input_ids'] = text
yield data
# except Exception as e:
# raise(e)
def collate_fn(self, examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()
if self.tokenizer is not None:
if isinstance(self.tokenizer, list):
assert len(self.tokenizer)==2
input_ids = torch.stack([example["input_ids"] for example in examples])
input_ids_2 = torch.stack([example["input_ids_2"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids, "input_ids_2": input_ids_2,}
else:
input_ids = torch.stack([example["input_ids"] for example in examples])
return {"pixel_values": pixel_values, "input_ids": input_ids,}
else:
input_ids = [example["input_ids"] for example in examples]
return {"pixel_values": pixel_values, "input_ids": input_ids,}
def make_train_dataset(
train_data_path,
size = 512,
tokenizer=None,
cfg_drop_ratio=0,
rank=0,
world_size=1,
shuffle=True,
):
_image_transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize(size),
T.CenterCrop((size,size)),
T.ToTensor(),
T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
if tokenizer is not None:
if isinstance(tokenizer, list):
assert len(tokenizer)==2
tokenizer_1 = TokenizerWrapper(
tokenizer[0],
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
tokenizer_2 = TokenizerWrapper(
tokenizer[1],
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
tokenizer = [tokenizer_1, tokenizer_2]
else:
tokenizer = TokenizerWrapper(
tokenizer,
is_train=True,
proportion_empty_prompts=cfg_drop_ratio,
use_generic_prompts=False,
)
train_dataset = TextPromptDataset(
data_root=train_data_path,
transform=_image_transform,
rank=rank,
world_size=world_size,
tokenizer=tokenizer,
shuffle=shuffle,
)
return train_dataset
### >>>>>>>> >>>>>>>> Test >>>>>>>> >>>>>>>> ###
if __name__ == "__main__":
from transformers import CLIPTextModel, CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
"/mnt/bn/ic-research-aigc-editing/fast-diffusion-models/assets/public_models/StableDiffusion/stable-diffusion-v1-5",
subfolder="tokenizer"
)
train_dataset = make_train_dataset(tokenizer=tokenizer, rank=0, world_size=10)
loader = torch.utils.data.DataLoader(
train_dataset, batch_size=64, num_workers=0,
collate_fn=train_dataset.collect_fn if hasattr(train_dataset, 'collect_fn') else None,
)
for batch in loader:
pixel_values = batch["pixel_values"]
prompt_ids = batch['input_ids']
from einops import rearrange
pixel_values = rearrange(pixel_values, 'b c h w -> b h w c')
for i in range(pixel_values.shape[0]):
import pdb; pdb.set_trace()
Image.fromarray(((pixel_values[i] + 1 )/2 * 255 ).numpy().astype(np.uint8)).save('tmp.png')
input_id = prompt_ids[i]
text = tokenizer.decode(input_id).split('<|startoftext|>')[-1].split('<|endoftext|>')[0]
print(text)
pass |