Spaces:
Runtime error
Runtime error
File size: 9,184 Bytes
f631117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Copyright (c) 2024 Alibaba Inc (authors: Xiang Lyu, Zhihao Du)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Dict, Optional, Union
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence, unpad_sequence
from cosyvoice.utils.common import IGNORE_ID
from cosyvoice.transformer.label_smoothing_loss import LabelSmoothingLoss
from cosyvoice.utils.common import th_accuracy
class TransformerLM(torch.nn.Module):
def __init__(
self,
text_encoder_input_size: int,
llm_input_size: int,
llm_output_size: int,
text_token_size: int,
speech_token_size: int,
text_encoder: torch.nn.Module,
llm: torch.nn.Module,
length_normalized_loss: bool = True,
lsm_weight: float = 0.0,
spk_embed_dim: int = 192,
):
super().__init__()
self.llm_input_size = llm_input_size
self.speech_token_size = speech_token_size
# 1. build text token inputs related modules
self.text_embedding = torch.nn.Embedding(text_token_size, text_encoder_input_size)
self.text_encoder = text_encoder
self.text_encoder_affine_layer = nn.Linear(
self.text_encoder.output_size(),
llm_input_size
)
# 2. build speech token language model related modules
self.sos_eos = 0
self.task_id = 1
self.llm_embedding = torch.nn.Embedding(2, llm_input_size)
self.llm = llm
self.llm_decoder = nn.Linear(llm_output_size, speech_token_size + 1)
self.criterion_ce = LabelSmoothingLoss(
size=speech_token_size + 1,
padding_idx=IGNORE_ID,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
# 3. [Optional] build speech token related modules
self.speech_embedding = torch.nn.Embedding(speech_token_size, llm_input_size)
self.spk_embed_affine_layer = torch.nn.Linear(spk_embed_dim, llm_input_size)
def encode(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
):
encoder_out, encoder_mask = self.text_encoder(text, text_lengths, decoding_chunk_size=1, num_decoding_left_chunks=-1)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
encoder_out = self.text_encoder_affine_layer(encoder_out)
return encoder_out, encoder_out_lens
def pad_unpad_sequence(self, sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len):
text_token = unpad_sequence(text_token, text_token_len.cpu(), batch_first=True)
speech_token = unpad_sequence(speech_token, speech_token_len.cpu(), batch_first=True)
lm_input = [torch.concat([sos_eos_emb.squeeze(dim=0), embedding[i], text_token[i], task_id_emb.squeeze(dim=0), speech_token[i]], dim=0) for i in range(len(text_token))]
lm_input_len = torch.tensor([i.size(0) for i in lm_input], dtype=torch.int32)
lm_input = pad_sequence(lm_input, batch_first=True, padding_value=IGNORE_ID)
return lm_input, lm_input_len
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
"""
Args:
text: (B, L, D)
text_lengths: (B,)
audio: (B, T, N) or (B, T)
audio_lengths: (B,)
"""
text_token = batch['text_token'].to(device)
text_token_len = batch['text_token_len'].to(device)
speech_token = batch['speech_token'].to(device)
speech_token_len = batch['speech_token_len'].to(device)
embedding = batch['embedding'].to(device)
# 1. prepare llm_target
lm_target = [torch.tensor([IGNORE_ID] * (2 + text_token_len[i]) + speech_token[i, :speech_token_len[i]].tolist() + [self.speech_token_size]) for i in range(text_token.size(0))]
lm_target = pad_sequence(lm_target, batch_first=True, padding_value=IGNORE_ID).to(device)
# 1. encode text_token
text_token = self.text_embedding(text_token)
text_token, text_token_len = self.encode(text_token, text_token_len)
# 2. embedding projection
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
embedding = embedding.unsqueeze(1)
# 3. eos and task_id
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
# 4. encode speech_token
speech_token = self.speech_embedding(speech_token)
# 5. unpad and pad
lm_input, lm_input_len = self.pad_unpad_sequence(sos_eos_emb, embedding, text_token, text_token_len, task_id_emb, speech_token, speech_token_len)
# 6. run lm forward
lm_output, lm_output_mask = self.llm(lm_input, lm_input_len.to(device))
logits = self.llm_decoder(lm_output)
loss = self.criterion_ce(logits, lm_target)
acc = th_accuracy(logits.view(-1, self.speech_token_size + 1), lm_target, ignore_label=IGNORE_ID)
return {'loss': loss, 'acc': acc}
def sampling_ids(
self,
weighted_scores: torch.Tensor,
sampling: Union[bool, int, float] = True,
beam_size: int = 1,
ignore_eos: bool = True,
):
while True:
prob, indices = weighted_scores.softmax(dim=-1).topk(sampling)
top_ids = prob.multinomial(beam_size, replacement=True)
top_ids = indices[top_ids]
if (not ignore_eos) or (self.speech_token_size not in top_ids):
break
return top_ids
@torch.inference_mode()
def inference(
self,
text: torch.Tensor,
text_len: torch.Tensor,
prompt_text: torch.Tensor,
prompt_text_len: torch.Tensor,
prompt_speech_token: torch.Tensor,
prompt_speech_token_len: torch.Tensor,
embedding: torch.Tensor,
beam_size: int = 1,
sampling: int = 25,
max_token_text_ratio: float = 20,
min_token_text_ratio: float = 2,
) -> torch.Tensor:
device = text.device
text = torch.concat([prompt_text, text], dim=1)
text_len += prompt_text_len
text = self.text_embedding(text)
# 1. encode text
text, text_len = self.encode(text, text_len)
# 2. encode embedding
if embedding.shape[0] != 0:
embedding = F.normalize(embedding, dim=1)
embedding = self.spk_embed_affine_layer(embedding)
embedding = embedding.unsqueeze(dim=1)
else:
embedding = torch.zeros(1, 0, self.llm_input_size).to(device)
# 3. concat llm_input
sos_eos_emb = self.llm_embedding.weight[self.sos_eos].reshape(1, 1, -1)
task_id_emb = self.llm_embedding.weight[self.task_id].reshape(1, 1, -1)
if prompt_speech_token_len != 0:
prompt_speech_token_emb = self.speech_embedding(prompt_speech_token)
else:
prompt_speech_token_emb = torch.zeros(1, 0, self.llm_input_size).to(device)
lm_input = torch.concat([sos_eos_emb, embedding, text, task_id_emb, prompt_speech_token_emb], dim=1)
# 4. cal min/max_length
min_len = int((text_len - prompt_text_len) * min_token_text_ratio)
max_len = int((text_len - prompt_text_len) * max_token_text_ratio)
# 5. step by step decode
out_tokens = []
offset = 0
att_cache, cnn_cache = torch.zeros((0, 0, 0, 0), device=lm_input.device), torch.zeros((0, 0, 0, 0), device=lm_input.device)
for i in range(max_len):
y_pred, att_cache, cnn_cache = self.llm.forward_chunk(lm_input, offset=0, required_cache_size=-1, att_cache=att_cache, cnn_cache=cnn_cache,
att_mask=torch.tril(torch.ones((1, lm_input.shape[1], lm_input.shape[1]), device=lm_input.device)).to(torch.bool))
logp = self.llm_decoder(y_pred[:, -1]).log_softmax(dim=-1)
top_ids = self.sampling_ids(logp.squeeze(dim=0), sampling, beam_size, ignore_eos=True if i < min_len else False).item()
if top_ids == self.speech_token_size:
break
out_tokens.append(top_ids)
offset += lm_input.size(1)
lm_input = self.speech_embedding.weight[top_ids].reshape(1, 1, -1)
return torch.tensor([out_tokens], dtype=torch.int64, device=device)
|