Spaces:
Runtime error
Runtime error
File size: 9,445 Bytes
f631117 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import torch
import math
from tqdm import trange, tqdm
import k_diffusion as K
# Define the noise schedule and sampling loop
def get_alphas_sigmas(t):
"""Returns the scaling factors for the clean image (alpha) and for the
noise (sigma), given a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
def alpha_sigma_to_t(alpha, sigma):
"""Returns a timestep, given the scaling factors for the clean image and for
the noise."""
return torch.atan2(sigma, alpha) / math.pi * 2
def t_to_alpha_sigma(t):
"""Returns the scaling factors for the clean image and for the noise, given
a timestep."""
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
@torch.no_grad()
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
"""Draws samples from a model given starting noise. Euler method"""
# Make tensor of ones to broadcast the single t values
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(sigma_max, 0, steps + 1)
#alphas, sigmas = 1-t, t
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
# Broadcast the current timestep to the correct shape
t_curr_tensor = t_curr * torch.ones(
(x.shape[0],), dtype=x.dtype, device=x.device
)
dt = t_prev - t_curr # we solve backwards in our formulation
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
# If we are on the last timestep, output the denoised image
return x
@torch.no_grad()
def sample(model, x, steps, eta, **extra_args):
"""Draws samples from a model given starting noise. v-diffusion"""
ts = x.new_ones([x.shape[0]])
# Create the noise schedule
t = torch.linspace(1, 0, steps + 1)[:-1]
alphas, sigmas = get_alphas_sigmas(t)
# The sampling loop
for i in trange(steps):
# Get the model output (v, the predicted velocity)
with torch.cuda.amp.autocast():
v = model(x, ts * t[i], **extra_args).float()
# Predict the noise and the denoised image
pred = x * alphas[i] - v * sigmas[i]
eps = x * sigmas[i] + v * alphas[i]
# If we are not on the last timestep, compute the noisy image for the
# next timestep.
if i < steps - 1:
# If eta > 0, adjust the scaling factor for the predicted noise
# downward according to the amount of additional noise to add
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
# Recombine the predicted noise and predicted denoised image in the
# correct proportions for the next step
x = pred * alphas[i + 1] + eps * adjusted_sigma
# Add the correct amount of fresh noise
if eta:
x += torch.randn_like(x) * ddim_sigma
# If we are on the last timestep, output the denoised image
return pred
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
def get_bmask(i, steps, mask):
strength = (i+1)/(steps)
# convert to binary mask
bmask = torch.where(mask<=strength,1,0)
return bmask
def make_cond_model_fn(model, cond_fn):
def cond_model_fn(x, sigma, **kwargs):
with torch.enable_grad():
x = x.detach().requires_grad_()
denoised = model(x, sigma, **kwargs)
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
return cond_denoised
return cond_model_fn
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_k(
model_fn,
noise,
init_data=None,
mask=None,
steps=100,
sampler_type="dpmpp-2m-sde",
sigma_min=0.5,
sigma_max=50,
rho=1.0, device="cuda",
callback=None,
cond_fn=None,
**extra_args
):
denoiser = K.external.VDenoiser(model_fn)
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
# Scale the initial noise by sigma
noise = noise * sigmas[0]
wrapped_callback = callback
if mask is None and init_data is not None:
# VARIATION (no inpainting)
# set the initial latent to the init_data, and noise it with initial sigma
x = init_data + noise
elif mask is not None and init_data is not None:
# INPAINTING
bmask = get_bmask(0, steps, mask)
# initial noising
input_noised = init_data + noise
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
x = input_noised * bmask + noise * (1-bmask)
# define the inpainting callback function (Note: side effects, it mutates x)
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
def inpainting_callback(args):
i = args["i"]
x = args["x"]
sigma = args["sigma"]
#denoised = args["denoised"]
# noise the init_data input with this step's appropriate amount of noise
input_noised = init_data + torch.randn_like(init_data) * sigma
# shrinking hard mask
bmask = get_bmask(i, steps, mask)
# mix input_noise with x, using binary mask
new_x = input_noised * bmask + x * (1-bmask)
# mutate x
x[:,:,:] = new_x[:,:,:]
# wrap together the inpainting callback and the user-submitted callback.
if callback is None:
wrapped_callback = inpainting_callback
else:
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
else:
# SAMPLING
# set the initial latent to noise
x = noise
with torch.cuda.amp.autocast():
if sampler_type == "k-heun":
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-lms":
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpmpp-2s-ancestral":
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-2":
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-fast":
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "k-dpm-adaptive":
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-2m-sde":
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
elif sampler_type == "dpmpp-3m-sde":
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
# Uses discrete Euler sampling for rectified flow models
# init_data is init_audio as latents (if this is latent diffusion)
# For sampling, set both init_data and mask to None
# For variations, set init_data
# For inpainting, set both init_data & mask
def sample_rf(
model_fn,
noise,
init_data=None,
steps=100,
sigma_max=1,
device="cuda",
callback=None,
cond_fn=None,
**extra_args
):
if sigma_max > 1:
sigma_max = 1
if cond_fn is not None:
denoiser = make_cond_model_fn(denoiser, cond_fn)
wrapped_callback = callback
if init_data is not None:
# VARIATION (no inpainting)
# Interpolate the init data and the noise for init audio
x = init_data * (1 - sigma_max) + noise * sigma_max
else:
# SAMPLING
# set the initial latent to noise
x = noise
with torch.cuda.amp.autocast():
# TODO: Add callback support
#return sample_discrete_euler(model_fn, x, steps, sigma_max, callback=wrapped_callback, **extra_args)
return sample_discrete_euler(model_fn, x, steps, sigma_max, **extra_args) |