Spaces:
Running
Running
File size: 10,276 Bytes
07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 a1c7ed3 07681a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Hamza Farooq
"""
from string import punctuation
from collections import Counter
from heapq import nlargest
import os
from sentence_transformers import SentenceTransformer, CrossEncoder, util
import datetime
import streamlit as st
import matplotlib.pyplot as plt
from wordcloud import WordCloud
from matplotlib import pyplot as plt
import nltk
from rank_bm25 import BM25Okapi
from sklearn.feature_extraction import _stop_words
import string
from tqdm.autonotebook import tqdm
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
import pickle
from sentence_transformers import SentenceTransformer, util
import torch
# import utils as utl
import time
import torch
import transformers
from transformers import BartTokenizer, BartForConditionalGeneration
from string import punctuation
# tr = BartTokenizer.from_pretrained('facebook/bart-large-cnn')
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
from sentence_transformers import SentenceTransformer, util
import torch
def main():
# Settings
st.set_page_config(layout="wide", page_title='Paris Hotel Finder', page_icon="🎈" )
from string import punctuation
punctuation=punctuation+ '\n'
from sentence_transformers import SentenceTransformer, util
import torch
import numpy as np
import pandas as pd
from sentence_transformers import SentenceTransformer
import scipy.spatial
from sentence_transformers import SentenceTransformer, util
import torch
#import os
@st.cache(allow_output_mutation=True)
def load_model():
return SentenceTransformer('all-MiniLM-L6-v2'),SentenceTransformer('multi-qa-MiniLM-L6-cos-v1'),CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
embedder,bi_encoder,cross_encoder = load_model()
#original_title = '<p style="font-family:IBM Mono; color:Blue; font-size: 20px;">Original image</p>'
st.title("travelle - Parisian Hotel Finder")
with st.expander("ℹ️ - About this app", expanded=True):
st.write(
"""
- travelle is a hotel search engine that allows users to enter free text query to make the search result personalized to user preference as opposed to other travel websites where a user has to spend hours going through hotel list.
- We use natural language processing and big data to return results customized for your preferences.
- A user can enter just about anything and we will narrow the results to what closely matches your requirements.
- For e.g. a user can enter a query like "Hotel near the Eiffel and cheaper than $300 per night with free breakfast" and we will find the closest results
"""
)
punctuation=punctuation+ '\n'
#import os
# embedder = SentenceTransformer('all-MiniLM-L6-v2')
def lower_case(input_str):
input_str = input_str.lower()
return input_str
df_all = pd.read_csv('paris_clean_newer.csv')
df_combined = df_all.sort_values(['Hotel']).groupby('Hotel', sort=False).text.apply(''.join).reset_index(name='all_review')
df_combined_paris_summary = pd.read_csv('df_combined_paris.csv')
df_combined_paris_summary = df_combined_paris_summary[['Hotel','summary']]
import re
# df_combined = pd.read_csv('df_combined.csv')
df_combined['all_review'] = df_combined['all_review'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x))
df_combined['all_review']= df_combined['all_review'].apply(lambda x: lower_case(x))
df_basic = df_all[['Hotel','description','price_per_night']].drop_duplicates()
df_basic = df_basic.merge(df_combined_paris_summary,how='left')
df_combined_e = df_combined.merge(df_basic)
df_combined_e['all_review'] =df_combined_e['description']+ df_combined_e['all_review'] + df_combined_e['price_per_night']
df = df_combined_e.copy()
df_sentences = df_combined_e.set_index("all_review")
df_sentences = df_sentences["Hotel"].to_dict()
df_sentences_list = list(df_sentences.keys())
import pandas as pd
from tqdm import tqdm
from sentence_transformers import SentenceTransformer, util
df_sentences_list = [str(d) for d in tqdm(df_sentences_list)]
#
corpus = df_sentences_list
# corpus_embeddings = embedder.encode(corpus,show_progress_bar=True)
corpus_embeddings = np.load('embeddings.npy')
bi_encoder.max_seq_length = 512 #Truncate long passages to 256 tokens
top_k = 32 #Number of passages we want to retrieve with the bi-encoder
#The bi-encoder will retrieve 100 documents. We use a cross-encoder, to re-rank the results list to improve the quality
# corpus_embeddings_h = np.load('embeddings_h_r.npy')
with open('corpus_embeddings_bi_encoder.pickle', 'rb') as pkl:
doc_embedding = pickle.load(pkl)
with open('tokenized_corpus.pickle', 'rb') as pkl:
tokenized_corpus = pickle.load(pkl)
bm25 = BM25Okapi(tokenized_corpus)
passages = corpus
# We lower case our text and remove stop-words from indexing
def bm25_tokenizer(text):
tokenized_doc = []
for token in text.lower().split():
token = token.strip(string.punctuation)
if len(token) > 0:
tokenized_doc.append(token)
return tokenized_doc
def search(query):
# q = [str(userinput)]
# doc = nlp(str(userinput))
# ent_html = displacy.render(doc, style="ent", jupyter=False)
# Display the entity visualization in the browser:
st.markdown(query, unsafe_allow_html=True)
##### BM25 search (lexical search) #####
bm25_scores = bm25.get_scores(bm25_tokenizer(query))
top_n = np.argpartition(bm25_scores, -5)[-5:]
bm25_hits = [{'corpus_id': idx, 'score': bm25_scores[idx]} for idx in top_n]
bm25_hits = sorted(bm25_hits, key=lambda x: x['score'], reverse=True)
bm25list = {}
st.title("Top-5 lexical search (BM25) hits")
for hit in bm25_hits[0:5]:
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
st.subheader(row_dict['Hotel'].values[0])
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
st.write(f'\tPrice Per night: {de.price_per_night.values[0]}')
st.write(f'Description: {de.description.values[0]}')
st.expander(de.description.values[0],expanded=False)
# try:
# st.write('Summary')
# st.expander(de.summary.values[0],expanded=False)
# except:
# None
# doc = corpus[hit['corpus_id']]
# kp.get_key_phrases(doc)
bm25list[row_dict['Hotel'].values[0]] = de.description.values[0][0:200]
#### Sematic Search #####
# Encode the query using the bi-encoder and find potentially relevant passages
question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
# question_embedding = question_embedding.cuda()
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k)
hits = hits[0] # Get the hits for the first query
##### Re-Ranking #####
# Now, score all retrieved passages with the cross_encoder
cross_inp = [[query, passages[hit['corpus_id']]] for hit in hits]
cross_scores = cross_encoder.predict(cross_inp)
# Sort results by the cross-encoder scores
for idx in range(len(cross_scores)):
hits[idx]['cross-score'] = cross_scores[idx]
# Output of top-5 hits from bi-encoder
st.write("\n-------------------------\n")
st.title("Top-5 Bi-Encoder Retrieval hits")
hits = sorted(hits, key=lambda x: x['score'], reverse=True)
for hit in hits[0:5]:
# st.write("\t{:.3f}\t{}".format(hit['score'], passages[hit['corpus_id']].replace("\n", " ")))
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
st.subheader(row_dict['Hotel'].values[0])
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
st.write(f'\tPrice Per night: {de.price_per_night.values[0]}')
st.write(f'Description: {de.description.values[0]}')
st.expander(de.description.values[0])
# try:
# st.write('Summary')
# st.expander(de.summary.values[0],expanded=False)
# except:
# None
# Output of top-5 hits from re-ranker
st.write("\n-------------------------\n")
st.title("Top-5 Cross-Encoder Re-ranker hits")
hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
for hit in hits[0:5]:
# st.write("\t{:.3f}\t{}".format(hit['cross-score'], passages[hit['corpus_id']].replace("\n", " ")))
row_dict = df.loc[df['all_review']== corpus[hit['corpus_id']]]
st.subheader(row_dict['Hotel'].values[0])
de = df_basic.loc[df_basic.Hotel == row_dict['Hotel'].values[0]]
st.write(f'\tPrice Per night: {de.price_per_night.values[0]}')
st.write(f'Description: {de.description.values[0]}')
st.expander(de.description.values[0])
# try:
# st.write('Summary')
# st.expander(de.summary.values[0],expanded=False)
# except:
# None
sampletext = 'e.g. Hotel near Eiffel Tower with big rooms'
userinput = st.text_input('Tell us what are you looking in your hotel?','e.g. Hotel near Eiffel Tower with big rooms',autocomplete="on")
da = st.date_input(
"Date Check-in",
datetime.date(2023, 6, 3))
dst = st.date_input(
"Date Check-out",
datetime.date(2023, 6, 8))
if not userinput or userinput == sampletext:
st.write("Please enter a query to get results")
else:
query = [str(userinput)]
doc = nlp(str(userinput))
search(str(userinput))
# We use cosine-similarity and torch.topk to find the highest 5 scores
if __name__ == '__main__':
main()
|