Spaces:
Runtime error
Runtime error
File size: 13,009 Bytes
fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 484e78f fecd672 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
{
"cells": [
{
"cell_type": "markdown",
"id": "8c68f03e-620c-46a9-a7ec-a6cde27043cd",
"metadata": {},
"source": [
"# Hugging Face Spaces From A Notebook\n",
"\n",
"> A demo of using nbdev with Hugging Face Spaces"
]
},
{
"cell_type": "markdown",
"id": "96483373-4ae1-49b2-85ed-ceee8456df19",
"metadata": {},
"source": [
"## 1. Create a Gradio-enabled Space on Hugging Face\n",
"\n",
"The first step is to create a space and select the appropriate sdk (which is Gradio in this example), per [these instructions](https://huggingface.co/docs/hub/spaces-overview#creating-a-new-space):"
]
},
{
"cell_type": "markdown",
"id": "b34d7ec6-69b8-48c4-a68b-fad6db3c2fab",
"metadata": {},
"source": [
"![](./create_space.png)"
]
},
{
"cell_type": "markdown",
"id": "c25e8e7a-52d9-4305-a107-ba03e3d6a5f3",
"metadata": {},
"source": [
"After you are done creating the space, **clone the repo per the instructions provided in the app.** In this example, I ran the command `git clone https://huggingface.co/spaces/hamel/hfspace_demo`."
]
},
{
"cell_type": "markdown",
"id": "ff26114c-329b-4a97-98b5-c652554b0114",
"metadata": {},
"source": [
"## 2. Make an app with Gradio"
]
},
{
"cell_type": "markdown",
"id": "14a884fc-36e2-43ec-8e42-ca2903aaa4de",
"metadata": {},
"source": [
"Below, we will create a [gradio](https://gradio.app/) app in a notebook and show you how to deploy it to [Hugging Face Spaces](https://huggingface.co/docs/hub/spaces).\n",
"\n",
"First, lets specify the libraries we need, which in this case are `gradio` and `fastcore`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "e5e5d597-19ad-46e5-81ad-8f646d8a1c21",
"metadata": {},
"outputs": [],
"source": [
"#|export app\n",
"import gradio as gr\n",
"from fastcore.net import urljson, HTTPError"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "38a4389f-ef53-4626-a6f5-a859354f854b",
"metadata": {},
"outputs": [],
"source": [
"#|export\n",
"def size(repo:str):\n",
" \"Returns the size in GB of a HuggingFace Dataset.\"\n",
" url = f'https://huggingface.co/api/datasets/{repo}'\n",
" try: resp = urljson(f'{url}/treesize/main')\n",
" except HTTPError: return f'Did not find repo: {url}'\n",
" gb = resp['size'] / 1e9\n",
" return f'{gb:.2f} GB'"
]
},
{
"cell_type": "markdown",
"id": "9ff9f84d-7744-46ad-80ed-2cf1fa6d0643",
"metadata": {},
"source": [
"`size` take as an input a [Hugging Face Dataset](https://huggingface.co/docs/datasets/index) repo and returns the total size in GB of the data.\n",
"\n",
"For example, we can check the size of [tglcourse/CelebA-faces-cropped-128](https://huggingface.co/datasets/tglcourse/CelebA-faces-cropped-128) like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "95bc32b8-d8ff-4761-a2d7-0880c51d0a42",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'5.49 GB'"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"size(\"tglcourse/CelebA-faces-cropped-128\")"
]
},
{
"cell_type": "markdown",
"id": "cb13747b-ea48-4146-846d-deb9e855d32d",
"metadata": {},
"source": [
"You can construct a simple UI with the `gradio.interface` and then call the `launch` method of that interface to display a preview in a notebook. This is a great way to test your app to see if it works"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7b20e2a1-b622-4970-9069-0202ce10a2ce",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"500\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"(<gradio.routes.App>, 'http://127.0.0.1:7860/', None)"
]
},
"execution_count": null,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"#|export\n",
"iface = gr.Interface(fn=size, inputs=gr.Text(value=\"tglcourse/CelebA-faces-cropped-128\"), outputs=\"text\")\n",
"iface.launch(width=500)"
]
},
{
"cell_type": "markdown",
"id": "59926b18-a9af-4387-9fcc-f88e588da577",
"metadata": {},
"source": [
"Note how running the `launch()` method in a notebook runs a webserver in the background. Below, we call the `close()` method to close the webserver."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39d7be72-9389-42cf-91b1-78e8f4bbd083",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closing server running on port: 7860\n"
]
}
],
"source": [
"# this is only necessary in a notebook\n",
"iface.close()"
]
},
{
"cell_type": "markdown",
"id": "249b2cd7-3123-45bf-945f-882b8a964cf5",
"metadata": {},
"source": [
"## 3. Converting This Notebook Into A Gradio App"
]
},
{
"cell_type": "markdown",
"id": "5c18ca6e-8de8-49e1-b95a-304070bbc171",
"metadata": {},
"source": [
"In order to host this code on Hugging Faces spaces, you will export parts of this notebook to a script named `app.py`. That is what the special `#|export` comment that you have seen in cells above do! You can export code from this notebook like so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6706d92c-5785-4f09-9773-b9a944c493a5",
"metadata": {},
"outputs": [],
"source": [
"from nbdev.export import nb_export\n",
"nb_export('app.ipynb', lib_path='.', name='app')"
]
},
{
"cell_type": "markdown",
"id": "0182403f-d1d6-48c0-8e66-46aefb23a9ab",
"metadata": {},
"source": [
"<div>\n",
"<link rel=\"stylesheet\" href=\"https://gradio.s3-us-west-2.amazonaws.com/2.6.5/static/bundle.css\">\n",
"<div id=\"target\"></div>\n",
"<script src=\"https://gradio.s3-us-west-2.amazonaws.com/2.6.5/static/bundle.js\"></script>\n",
"<script>\n",
"launchGradioFromSpaces(\"abidlabs/question-answering\", \"#target\")\n",
"</script>\n",
"</div>"
]
},
{
"cell_type": "markdown",
"id": "84d5fd19-7880-459c-8382-b3574ed11141",
"metadata": {},
"source": [
"### Understanding what is generated"
]
},
{
"cell_type": "markdown",
"id": "9ea562e7-b67a-45df-b822-2f4528a307c2",
"metadata": {},
"source": [
"Notice how the contents of app.py only contains the exported cells from this notebook:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4bae6a5c-58bc-4a0f-9aac-34c092150fdc",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\u001b[0;31m# AUTOGENERATED! DO NOT EDIT! File to edit: app.ipynb.\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;31m# %% auto 0\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0m__all__\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'iface'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;31m# %% app.ipynb 7\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;32mdef\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrepo\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;34m\"Returns the size in GB of a HuggingFace Dataset.\"\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34mf'https://huggingface.co/api/datasets/{repo}'\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mresp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0murljson\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'{url}/treesize/main'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mHTTPError\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34mf'Did not find repo: {url}'\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0mgb\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mresp\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'size'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;36m1e9\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0;34mf'{gb:.2f} GB'\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0;31m# %% app.ipynb 11\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0miface\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mInterface\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfn\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mText\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"tglcourse/CelebA-faces-cropped-128\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moutputs\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"text\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\n",
"\u001b[0;34m\u001b[0m\u001b[0miface\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlaunch\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mwidth\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m500\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%pycat app.py"
]
},
{
"cell_type": "markdown",
"id": "a081bb0f-5cad-4b99-962b-4dd49cee61a2",
"metadata": {},
"source": [
"### Fill out `requirements.txt`\n",
"\n",
"You must supply a requirements.txt file so the gradio app knows how to build your dependencies. In this example, the only depdency other than gradio is `fastcore`. You don't need to specify gradio itself as a depdendency in `requirements.txt` so our `requirements.txt` file has only one dependency:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b611d9c-d262-4124-9e9e-4fe754ac4378",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"fastcore"
]
}
],
"source": [
"!cat requirements.txt"
]
},
{
"cell_type": "markdown",
"id": "f15d9c78-1f55-449e-8058-9af1832367a0",
"metadata": {},
"source": [
"## 4. Launch Your Gradio App\n",
"\n",
"To launch your gradio app, you need to commit the changes in the Hugging Face repo:\n",
"\n",
"```\n",
"git add -A; git commit -m \"Add application files\"; git push\n",
"```"
]
},
{
"cell_type": "markdown",
"id": "fa661f93-73b4-465a-9c22-cc38197505cb",
"metadata": {},
"source": [
"## 5. Voilà! Enjoy your Gradio App"
]
},
{
"cell_type": "markdown",
"id": "9b20ff94-6842-4078-9ec1-be740944e721",
"metadata": {},
"source": [
"After a couple of minutes, you will see your app published! "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9a4f7c06-406a-4a7d-be6b-6cb606c35d8d",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[NbConvertApp] Converting notebook app.ipynb to markdown\n",
"[NbConvertApp] Writing 6113 bytes to app.md\n"
]
}
],
"source": [
"# this is only for hamel, you can ignore this.\n",
"!jupyter nbconvert --to markdown app.ipynb \n",
"!cat yaml.md app.md > README.md "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "958174fe-537e-4635-90b8-22ac11eae396",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|