Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 9,419 Bytes
d489aeb 894c4b4 a88d51c 894c4b4 b34c95e 894c4b4 669da77 894c4b4 b34c95e 894c4b4 b50764d 894c4b4 b34c95e 894c4b4 669da77 c8ea768 894c4b4 669da77 894c4b4 c8ea768 894c4b4 669da77 4d089a8 669da77 b92393c 23e3854 669da77 c8ea768 669da77 1739293 669da77 ac7eda5 669da77 85b25b4 f6e5d38 669da77 ca9ece0 669da77 1739293 669da77 1739293 669da77 1739293 a88d51c 1739293 669da77 1739293 5a2355a 1739293 c639c51 5a2355a 1739293 5a2355a 1739293 c639c51 5a2355a 1739293 669da77 894c4b4 f6e5d38 894c4b4 669da77 894c4b4 c8ea768 c639c51 894c4b4 85b25b4 669da77 894c4b4 c8ea768 c639c51 894c4b4 669da77 894c4b4 699c361 62ff4a3 699c361 7644de5 6f3b005 b50764d ab109a3 85b25b4 669da77 1739293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
#!/usr/bin/env python
import os
import json
import random
from datetime import datetime
from src.backend.run_eval_suite import run_evaluation
from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
from src.backend.sort_queue import sort_models_by_priority
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
from src.backend.manage_requests import EvalRequest
from src.leaderboard.read_evals import EvalResult
from src.envs import QUEUE_REPO, RESULTS_REPO, API
from src.utils import my_snapshot_download
import time
import logging
import pprint
def my_set_eval_request(api, eval_request, set_to_status, hf_repo, local_dir):
for i in range(10):
try:
set_eval_request(api=api, eval_request=eval_request, set_to_status=set_to_status, hf_repo=hf_repo, local_dir=local_dir)
return
except Exception:
time.sleep(60)
return
logging.getLogger("openai").setLevel(logging.WARNING)
logging.basicConfig(level=logging.ERROR)
pp = pprint.PrettyPrinter(width=80)
PENDING_STATUS = "PENDING"
RUNNING_STATUS = "RUNNING"
FINISHED_STATUS = "FINISHED"
FAILED_STATUS = "FAILED"
TASKS_HARNESS = [task.value for task in Tasks]
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
def sanity_checks():
print(f'Device: {DEVICE}')
# pull the eval dataset from the hub and parse any eval requests
# check completed evals and set them to finished
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
check_completed_evals(api=API, checked_status=RUNNING_STATUS, completed_status=FINISHED_STATUS,
failed_status=FAILED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND,
hf_repo_results=RESULTS_REPO, local_dir_results=EVAL_RESULTS_PATH_BACKEND)
return
def request_to_result_name(request: EvalRequest) -> str:
# Request: EvalRequest(model='meta-llama/Llama-2-13b-hf', private=False, status='FINISHED',
# json_filepath='./eval-queue-bk/meta-llama/Llama-2-13b-hf_eval_request_False_False_False.json',
# weight_type='Original', model_type='pretrained', precision='float32', base_model='', revision='main',
# submitted_time='2023-09-09T10:52:17Z', likes=389, params=13.016, license='?')
#
# EvalResult(eval_name='meta-llama_Llama-2-13b-hf_float32', full_model='meta-llama/Llama-2-13b-hf',
# org='meta-llama', model='Llama-2-13b-hf', revision='main',
# results={'nq_open': 33.739612188365655, 'triviaqa': 74.12505572893447},
# precision=<Precision.float32: ModelDetails(name='float32', symbol='')>,
# model_type=<ModelType.PT: ModelDetails(name='pretrained', symbol='🟢')>,
# weight_type=<WeightType.Original: ModelDetails(name='Original', symbol='')>,
# architecture='LlamaForCausalLM', license='?', likes=389, num_params=13.016, date='2023-09-09T10:52:17Z', still_on_hub=True)
#
org_and_model = request.model.split("/", 1)
if len(org_and_model) == 1:
model = org_and_model[0]
res = f"{model}_{request.precision}"
else:
org = org_and_model[0]
model = org_and_model[1]
res = f"{org}_{model}_{request.precision}"
return res
def process_evaluation(task: Task, eval_request: EvalRequest) -> dict:
batch_size = "auto"
try:
results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot,
batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
except RuntimeError as e:
if "No executable batch size found" in str(e):
batch_size = 1
results = run_evaluation(eval_request=eval_request, task_names=[task.benchmark], num_fewshot=task.num_fewshot,
batch_size=batch_size, device=DEVICE, use_cache=None, limit=LIMIT)
else:
raise
print('RESULTS', results)
dumped = json.dumps(results, indent=2, default=lambda o: '<not serializable>')
print(dumped)
output_path = os.path.join(EVAL_RESULTS_PATH_BACKEND, *eval_request.model.split("/"), f"results_{datetime.now()}.json")
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, "w") as f:
f.write(dumped)
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
API.upload_file(path_or_fileobj=output_path, path_in_repo=f"{eval_request.model}/results_{datetime.now()}.json",
repo_id=RESULTS_REPO, repo_type="dataset")
return results
def process_finished_requests(thr: int) -> bool:
sanity_checks()
current_finished_status = [FINISHED_STATUS, FAILED_STATUS]
# Get all eval request that are FINISHED, if you want to run other evals, change this parameter
eval_requests: list[EvalRequest] = get_eval_requests(job_status=current_finished_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests: list[EvalRequest] = sort_models_by_priority(api=API, models=eval_requests)
# XXX
# eval_requests = [r for r in eval_requests if 'bloom-560m' in r.model]
random.shuffle(eval_requests)
from src.leaderboard.read_evals import get_raw_eval_results
eval_results: list[EvalResult] = get_raw_eval_results(EVAL_RESULTS_PATH_BACKEND, EVAL_REQUESTS_PATH_BACKEND, True)
result_name_to_request = {request_to_result_name(r): r for r in eval_requests}
result_name_to_result = {r.eval_name: r for r in eval_results}
for eval_request in eval_requests:
if eval_request.likes >= thr:
result_name: str = request_to_result_name(eval_request)
# Check the corresponding result
from typing import Optional
eval_result: Optional[EvalResult] = result_name_to_result[result_name] if result_name in result_name_to_result else None
task_lst = TASKS_HARNESS.copy()
random.shuffle(task_lst)
# Iterate over tasks and, if we do not have results for a task, run the relevant evaluations
for task in task_lst:
task_name = task.benchmark
if eval_result is None or task_name not in eval_result.results:
eval_request: EvalRequest = result_name_to_request[result_name]
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
results = process_evaluation(task, eval_request)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
return True
return False
def process_pending_requests() -> bool:
sanity_checks()
current_pending_status = [PENDING_STATUS]
# Get all eval request that are PENDING, if you want to run other evals, change this parameter
eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
# Sort the evals by priority (first submitted first run)
eval_requests = sort_models_by_priority(api=API, models=eval_requests)
random.shuffle(eval_requests)
print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
if len(eval_requests) == 0:
return False
eval_request = eval_requests[0]
pp.pprint(eval_request)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=RUNNING_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
task_lst = TASKS_HARNESS.copy()
random.shuffle(task_lst)
for task in task_lst:
results = process_evaluation(task, eval_request)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_set_eval_request(api=API, eval_request=eval_request, set_to_status=FINISHED_STATUS, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
return True
if __name__ == "__main__":
wait = True
import socket
if socket.gethostname() in {'hamburg'} or os.path.isdir("/home/pminervi"):
wait = False
if wait:
time.sleep(60 * random.randint(5, 10))
pass
# res = False
res = process_pending_requests()
if res is False:
res = process_finished_requests(100)
if res is False:
res = process_finished_requests(0)
|