File size: 1,841 Bytes
5ca644e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python3

import glob
import os

import random
from tqdm import tqdm

from datasets import Dataset, DatasetDict, load_dataset


def convert(list_of_dicts):
    res = {}
    for d in list_of_dicts:
        for k, v in d.items():
            res.setdefault(k, []).append(v)
    return res


v10 = load_dataset("fever", "v1.0")
name_lst = ['train', 'labelled_dev']

old_to_new_label_map = {
    'SUPPORTS': 'supported',
    'REFUTES': 'refuted'
}

data_map = {}

for name in name_lst:
    instance_lst = []

    for entry in tqdm(v10[name]):
        id_ = entry['id']
        label = entry['label']
        claim = entry['claim']

        evidence_id = entry['evidence_id']
        evidence_wiki_url = entry['evidence_wiki_url']

        if evidence_id != -1:
            assert label in {'SUPPORTS', 'REFUTES'}

            instance = {'id': id_, 'label': old_to_new_label_map[label], 'claim': claim}
            instance_lst.append(instance)

    key = 'dev' if name in {'labelled_dev'} else name

    instance_lst = sorted([dict(t) for t in {tuple(d.items()) for d in instance_lst}], key=lambda d: d['claim'])

    label_to_instance_lst = {}
    for e in instance_lst:
        if e['label'] not in label_to_instance_lst:
            label_to_instance_lst[e['label']] = []
        label_to_instance_lst[e['label']].append(e)

    min_len = min(len(v) for k, v in label_to_instance_lst.items())

    new_instance_lst = []
    for k in sorted(label_to_instance_lst.keys()):
        new_instance_lst += label_to_instance_lst[k][:min_len]

    random.Random(42).shuffle(new_instance_lst)
    data_map[key] = new_instance_lst

ds_path = 'pminervini/hl-fever'

task_to_ds_map = {k: Dataset.from_dict(convert(v)) for k, v in data_map.items()}
ds_dict = DatasetDict(task_to_ds_map)

ds_dict.push_to_hub(ds_path, "v1.0")

# breakpoint()