Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 12,394 Bytes
b06387f c0db8b3 b06387f 7b5f39c b06387f c0db8b3 7b5f39c c0db8b3 b06387f c0db8b3 7b5f39c c0db8b3 e75cd03 c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f 5a94e04 c0db8b3 b06387f c0db8b3 b06387f c0db8b3 7b5f39c c0db8b3 7b5f39c c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 7b5f39c b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f e75cd03 5ca644e b06387f 7b5f39c b06387f c0db8b3 7b5f39c c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f c0db8b3 b06387f 5ca644e c0db8b3 5ca644e c0db8b3 b06387f c0db8b3 7b5f39c c0db8b3 5ca644e 7b5f39c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
#!/usr/bin/env python3
import os
import sys
import json
import pickle
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage
from src.backend.envs import Tasks, EVAL_REQUESTS_PATH_BACKEND, EVAL_RESULTS_PATH_BACKEND, DEVICE, LIMIT, Task
from src.envs import QUEUE_REPO, RESULTS_REPO, API
from src.utils import my_snapshot_download
def is_float(string):
try:
float(string)
return True
except ValueError:
return False
def find_json_files(json_path):
res = []
for root, dirs, files in os.walk(json_path):
for file in files:
if file.endswith(".json"):
res.append(os.path.join(root, file))
return res
def sanitise_metric(name: str) -> str:
res = name
res = res.replace("prompt_level_strict_acc", "Prompt-Level Accuracy")
res = res.replace("acc", "Accuracy")
res = res.replace("exact_match", "EM")
res = res.replace("avg-selfcheckgpt", "AVG")
res = res.replace("max-selfcheckgpt", "MAX")
res = res.replace("rouge", "ROUGE-")
res = res.replace("bertscore_precision", "BERT-P")
res = res.replace("exact", "EM")
res = res.replace("HasAns_EM", "HasAns")
res = res.replace("NoAns_EM", "NoAns")
res = res.replace("em", "EM")
return res
def sanitise_dataset(name: str) -> str:
res = name
res = res.replace("tqa8", "TriviaQA (8-shot)")
res = res.replace("nq8", "NQ (8-shot)")
res = res.replace("nq_open", "NQ (64-shot)")
res = res.replace("triviaqa", "TriviaQA (64-shot)")
res = res.replace("truthfulqa", "TruthfulQA")
res = res.replace("ifeval", "IFEval")
res = res.replace("selfcheckgpt", "SelfCheckGPT")
res = res.replace("truefalse_cieacf", "True-False")
res = res.replace("mc", "MC")
res = res.replace("race", "RACE")
res = res.replace("squad", "SQuAD")
res = res.replace("memo-trap", "MemoTrap")
res = res.replace("cnndm", "CNN/DM")
res = res.replace("xsum", "XSum")
res = res.replace("qa", "QA")
res = res.replace("summarization", "Summarization")
res = res.replace("dialogue", "Dialog")
res = res.replace("halueval", "HaluEval")
res = res.replace("_v2", "")
res = res.replace("_", " ")
return res
cache_file = 'data_map_cache.pkl'
def load_data_map_from_cache(cache_file):
if os.path.exists(cache_file):
with open(cache_file, 'rb') as f:
return pickle.load(f)
else:
return None
def save_data_map_to_cache(data_map, cache_file):
with open(cache_file, 'wb') as f:
pickle.dump(data_map, f)
# Try to load the data_map from the cache file
data_map = load_data_map_from_cache(cache_file)
if data_map is None:
my_snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
my_snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", max_workers=60)
result_path_lst = find_json_files(EVAL_RESULTS_PATH_BACKEND)
request_path_lst = find_json_files(EVAL_REQUESTS_PATH_BACKEND)
model_name_to_model_map = {}
for path in request_path_lst:
with open(path, 'r') as f:
data = json.load(f)
model_name_to_model_map[data["model"]] = data
model_dataset_metric_to_result_map = {}
# data_map[model_name][(dataset_name, sanitised_metric_name)] = value
data_map = {}
for path in result_path_lst:
with open(path, 'r') as f:
data = json.load(f)
model_name = data["config"]["model_name"]
for dataset_name, results_dict in data["results"].items():
for metric_name, value in results_dict.items():
if model_name_to_model_map[model_name]["likes"] > 128:
to_add = True
if 'f1' in metric_name:
to_add = False
if 'stderr' in metric_name:
to_add = False
if 'memo-trap_v2' in dataset_name:
to_add = False
if 'faithdial' in dataset_name:
to_add = False
if 'truthfulqa_gen' in dataset_name:
to_add = False
if 'bertscore' in metric_name:
if 'precision' not in metric_name:
to_add = False
if 'halueval' in dataset_name:
if 'acc' not in metric_name:
to_add = False
if 'ifeval' in dataset_name:
if 'prompt_level_strict_acc' not in metric_name:
to_add = False
if 'squad' in dataset_name:
# to_add = False
if 'best_exact' in metric_name:
to_add = False
if 'fever' in dataset_name:
to_add = False
if ('xsum' in dataset_name or 'cnn' in dataset_name) and 'v2' not in dataset_name:
to_add = False
if isinstance(value, str):
if is_float(value):
value = float(value)
else:
to_add = False
if to_add:
if 'rouge' in metric_name:
value /= 100.0
if 'squad' in dataset_name:
value /= 100.0
sanitised_metric_name = metric_name
if "," in sanitised_metric_name:
sanitised_metric_name = sanitised_metric_name.split(',')[0]
sanitised_metric_name = sanitise_metric(sanitised_metric_name)
sanitised_dataset_name = sanitise_dataset(dataset_name)
model_dataset_metric_to_result_map[(model_name, sanitised_dataset_name, sanitised_metric_name)] = value
if model_name not in data_map:
data_map[model_name] = {}
data_map[model_name][(sanitised_dataset_name, sanitised_metric_name)] = value
print('model_name', model_name, 'dataset_name', sanitised_dataset_name, 'metric_name', sanitised_metric_name, 'value', value)
save_data_map_to_cache(data_map, cache_file)
model_name_lst = [m for m in data_map.keys()]
nb_max_metrics = max(len(data_map[model_name]) for model_name in model_name_lst)
for model_name in model_name_lst:
if len(data_map[model_name]) < nb_max_metrics - 5:
del data_map[model_name]
plot_type_lst = ['all', 'summ', 'qa', 'instr', 'detect', 'rc']
for plot_type in plot_type_lst:
data_map_v2 = {}
for model_name in data_map.keys():
for dataset_metric in data_map[model_name].keys():
if dataset_metric not in data_map_v2:
data_map_v2[dataset_metric] = {}
if plot_type in {'all'}:
to_add = True
if 'ROUGE' in dataset_metric[1] and 'ROUGE-L' not in dataset_metric[1]:
to_add = False
if 'SQuAD' in dataset_metric[0] and 'EM' not in dataset_metric[1]:
to_add = False
if 'SelfCheckGPT' in dataset_metric[0] and 'MAX' not in dataset_metric[1]:
to_add = False
if '64-shot' in dataset_metric[0]:
to_add = False
if to_add is True:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
elif plot_type in {'summ'}:
if 'CNN' in dataset_metric[0] or 'XSum' in dataset_metric[0]:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
elif plot_type in {'qa'}:
if 'TriviaQA' in dataset_metric[0] or 'NQ' in dataset_metric[0] or 'TruthfulQA' in dataset_metric[0]:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
elif plot_type in {'instr'}:
if 'MemoTrap' in dataset_metric[0] or 'IFEval' in dataset_metric[0]:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
elif plot_type in {'detect'}:
if 'HaluEval' in dataset_metric[0] or 'SelfCheck' in dataset_metric[0]:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
elif plot_type in {'rc'}:
if 'RACE' in dataset_metric[0] or 'SQuAD' in dataset_metric[0]:
data_map_v2[dataset_metric][model_name] = data_map[model_name][dataset_metric]
else:
assert False, f"Unknown plot type: {plot_type}"
# df = pd.DataFrame.from_dict(data_map, orient='index') # Invert the y-axis (rows)
df = pd.DataFrame.from_dict(data_map_v2, orient='index') # Invert the y-axis (rows)
df.index = [', '.join(map(str, idx)) for idx in df.index]
o_df = df.copy(deep=True)
# breakpoint()
print(df)
# Check for NaN or infinite values and replace them
df.replace([np.inf, -np.inf], np.nan, inplace=True) # Replace infinities with NaN
df.fillna(0, inplace=True) # Replace NaN with 0 (or use another imputation strategy)
from sklearn.preprocessing import MinMaxScaler
# scaler = MinMaxScaler()
# df = pd.DataFrame(scaler.fit_transform(df), index=df.index, columns=df.columns)
# Calculate dimensions based on the DataFrame size
cell_height = 1.0 # Height of each cell in inches
cell_width = 1.0 # Width of each cell in inches
n_rows = len(df.index) # Datasets and Metrics
n_cols = len(df.columns) # Models
# Calculate figure size dynamically
fig_width = cell_width * n_cols + 0
fig_height = cell_height * n_rows + 0
col_cluster = True
row_cluster = True
sns.set_context("notebook", font_scale=1.3)
dendrogram_ratio = (.1, .1)
if plot_type in {'detect'}:
fig_width = cell_width * n_cols - 2
fig_height = cell_height * n_rows + 5.2
dendrogram_ratio = (.1, .2)
if plot_type in {'instr'}:
fig_width = cell_width * n_cols - 2
fig_height = cell_height * n_rows + 5.2
dendrogram_ratio = (.1, .4)
if plot_type in {'qa'}:
fig_width = cell_width * n_cols - 2
fig_height = cell_height * n_rows + 4
dendrogram_ratio = (.1, .2)
if plot_type in {'summ'}:
fig_width = cell_width * n_cols - 2
fig_height = cell_height * n_rows + 2.0
dendrogram_ratio = (.1, .1)
row_cluster = False
if plot_type in {'rc'}:
fig_width = cell_width * n_cols - 2
fig_height = cell_height * n_rows + 5.2
dendrogram_ratio = (.1, .4)
print('figsize', (fig_width, fig_height))
o_df.to_json(f'plots/clustermap_{plot_type}.json', orient='split')
print(f'Generating the clustermaps for {plot_type}')
for cmap in [None, 'coolwarm', 'viridis']:
fig = sns.clustermap(df,
method='ward',
metric='euclidean',
cmap=cmap,
figsize=(fig_width, fig_height), # figsize=(24, 16),
annot=True,
mask=o_df.isnull(),
dendrogram_ratio=dendrogram_ratio,
fmt='.2f',
col_cluster=col_cluster,
row_cluster=row_cluster)
# Adjust the size of the cells (less wide)
plt.setp(fig.ax_heatmap.get_yticklabels(), rotation=0)
plt.setp(fig.ax_heatmap.get_xticklabels(), rotation=90)
cmap_suffix = '' if cmap is None else f'_{cmap}'
# Save the clustermap to file
fig.savefig(f'blog/figures/clustermap_{plot_type}{cmap_suffix}.pdf')
fig.savefig(f'blog/figures/clustermap_{plot_type}{cmap_suffix}.png')
fig.savefig(f'blog/figures/clustermap_{plot_type}{cmap_suffix}_t.png', transparent=True, facecolor="none")
|