Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 14,664 Bytes
7dfe065 e394fbd a8ede2f 7dfe065 a8ede2f 855cd65 a8ede2f d40f223 fb33b22 855cd65 a8ede2f 855cd65 a8ede2f 7dfe065 a8ede2f 018441b a8ede2f 7dfe065 a8ede2f d40f223 a8ede2f 018441b 7dfe065 855cd65 7dfe065 669da77 855cd65 a8ede2f b142b2c 855cd65 fdb7c69 b142b2c 855cd65 f69201c a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 7dfe065 a8ede2f 855cd65 a8ede2f 018441b a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f bef4eff a8ede2f 855cd65 6bcbc2b a8ede2f 3c8d224 a8ede2f 3bc2f22 a8ede2f 855cd65 a8ede2f 855cd65 7dfe065 a8ede2f 855cd65 a8ede2f 7148b21 a8ede2f bef4eff d40f223 bef4eff d40f223 fb33b22 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 018441b a8ede2f 855cd65 a8ede2f 018441b a8ede2f e504efd 855cd65 a8ede2f 018441b a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 855cd65 a8ede2f 81b5773 c0945b2 81b5773 b3198c3 81b5773 c8ae03b 81b5773 a8ede2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
#!/usr/bin/env python
import os
import datetime
import socket
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.display.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
LLM_BENCHMARKS_DETAILS,
FAQ_TEXT,
TITLE
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
NUMERIC_INTERVALS,
TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, H4_TOKEN, IS_PUBLIC, QUEUE_REPO, REPO_ID, RESULTS_REPO
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
from src.utils import get_dataset_summary_table
def ui_snapshot_download(repo_id, local_dir, repo_type, tqdm_class, etag_timeout):
try:
print(local_dir)
snapshot_download(repo_id=repo_id, local_dir=local_dir, repo_type=repo_type, tqdm_class=tqdm_class, etag_timeout=etag_timeout)
except Exception as e:
restart_space()
def restart_space():
API.restart_space(repo_id=REPO_ID, token=H4_TOKEN)
def init_space():
dataset_df = get_dataset_summary_table(file_path='blog/Hallucination-Leaderboard-Summary.csv')
if socket.gethostname() not in {'neuromancer'}:
# sync model_type with open-llm-leaderboard
ui_snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
ui_snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30)
raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, "", COLS, BENCHMARK_COLS)
finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
return dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df
dataset_df, original_df, finished_eval_queue_df, running_eval_queue_df, pending_eval_queue_df = init_space()
leaderboard_df = original_df.copy()
# Searching and filtering
def update_table(hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: list,
size_query: list,
query: str):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
# always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
always_here_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
dummy_col = [AutoEvalColumn.dummy.name]
# We use COLS to maintain sorting
filtered_df = df[
# always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]
always_here_cols + [c for c in COLS if c in df.columns and c in columns] + dummy_col
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame):
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
subset = [AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
filtered_df = filtered_df.drop_duplicates(subset=subset)
return filtered_df
def filter_models(df: pd.DataFrame,
type_query: list,
size_query: list,
precision_query: list) -> pd.DataFrame:
# Show all models
filtered_df = df
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
# triggered only once at startup => read query parameter if it exists
def load_query(request: gr.Request):
query = request.query_params.get("query") or ""
return query
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Hallucinations Benchmark",
elem_id="llm-benchmark-tab-table",
id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(placeholder=" π Model search (separate multiple queries with `;`)",
show_label=False,
elem_id="search-bar")
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in fields(AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in fields(AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True)
with gr.Column(min_width=320):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in ModelType],
value=[t.to_str() for t in ModelType],
interactive=True,
elem_id="filter-columns-type")
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in Precision],
value=[i.value.name for i in Precision],
interactive=True,
elem_id="filter-columns-precision")
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(NUMERIC_INTERVALS.keys()),
value=list(NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size")
# breakpoint()
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value + [AutoEvalColumn.dummy.name]
] if leaderboard_df.empty is False else leaderboard_df,
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True) # column_widths=["2%", "20%"]
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[COLS] if original_df.empty is False else original_df,
headers=COLS,
datatype=TYPES,
visible=False)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
search_bar,
],
leaderboard_table)
# Check query parameter once at startup and update search bar
demo.load(load_query, inputs=[], outputs=[search_bar])
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
search_bar,
],
leaderboard_table,
queue=True)
with gr.TabItem("About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
dataset_table = gr.components.Dataframe(
value=dataset_df,
headers=list(dataset_df.columns),
datatype=['str', 'markdown', 'str', 'str', 'str'],
elem_id="dataset-table",
interactive=False,
visible=True,
column_widths=["15%", "20%"])
gr.Markdown(LLM_BENCHMARKS_DETAILS, elem_classes="markdown-text")
gr.Markdown(FAQ_TEXT, elem_classes="markdown-text")
with gr.TabItem("Submit a model ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5)
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5)
with gr.Accordion(f"β³ Scheduled Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5)
with gr.Row():
gr.Markdown("# Submit your model here", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
private = gr.Checkbox(False, label="Private", visible=not IS_PUBLIC)
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float32",
interactive=True)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
private,
weight_type,
model_type,
],
submission_result)
with gr.Row():
with gr.Accordion("Citing this leaderboard", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=6 * 60 * 60)
def launch_backend():
import subprocess
from src.backend.envs import DEVICE
if DEVICE not in {'cpu'}:
_ = subprocess.run(["python", "backend-cli.py"])
# scheduler.add_job(launch_backend, "interval", seconds=120)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|