File size: 4,547 Bytes
5302799
 
b89bba2
5302799
 
 
 
66bf5cc
c9c2072
 
97ad829
66bf5cc
c9052ff
 
66bf5cc
 
 
 
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
5e65c0a
66bf5cc
976c3d7
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
66bf5cc
 
ed7680f
66bf5cc
 
 
 
 
 
c9c2072
66bf5cc
ed7680f
 
5302799
 
66bf5cc
 
 
 
 
 
 
c9c2072
66bf5cc
 
5302799
 
 
 
c20e759
 
5302799
c20e759
 
 
 
5302799
 
c20e759
ed7680f
5302799
c20e759
5302799
 
5e65c0a
c20e759
5e65c0a
5302799
c20e759
5302799
 
c20e759
ed7680f
5302799
c20e759
5302799
c20e759
 
5302799
c20e759
5302799
 
 
 
c9c2072
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import gradio as gr
from huggingface_hub import InferenceClient
from PyPDF2 import PdfReader

# Initialize the Inference Client
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")

def extract_text_from_pdf(file):
    if file is None:
        return ""
    reader = PdfReader(file)
    text = ""
    for page in reader.pages:
        text += page.extract_text()
    return text

def ats_friendly_checker(file):
    resume_text = extract_text_from_pdf(file)
    system_message = "Evaluate the following resume for ATS-friendliness and provide feedback."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content
    
    feedback = response
    return feedback

def resume_match_checker(file, job_description):
    resume_text = extract_text_from_pdf(file)
    
    system_message = "Compare the following resume with the job description and provide feedback."
    message = f"Resume: {resume_text}\n\nJob Description: {job_description}"
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content

    feedback = response
    return feedback

def resume_quality_score(file):
    resume_text = extract_text_from_pdf(file)
    system_message = "Evaluate the following resume for overall quality and provide feedback."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content

    interpretation = response
    return interpretation

def text_to_overleaf(resume_text):
    system_message = "Convert the following resume text to Overleaf code."
    message = resume_text
    response = client.chat_completion(
        [{"role": "system", "content": system_message}, {"role": "user", "content": message}],
        max_tokens=512,
        temperature=0.7,
        top_p=0.95
    ).choices[0].message.content
    
    overleaf_code = response
    return overleaf_code

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("""
    # Resume Enhancement Tool πŸš€
    
    Welcome to the Resume Enhancement Tool! This tool offers several features to help you enhance your resume, ensuring it's ATS-friendly, matches job descriptions, and is of high quality. You can also convert your resume text to Overleaf code for a polished, professional look.
    """)
    
    with gr.Tab("ATS-Friendly Checker πŸ“"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50)
        resume.upload(ats_friendly_checker, resume, feedback)
    
    with gr.Tab("Resume Match Checker πŸ”"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            job_description = gr.Textbox(label="Job Description")
            feedback = gr.Textbox(label="Feedback", interactive=False, lines=15, max_lines=50)
        gr.Button("Check Match").click(resume_match_checker, [resume, job_description], feedback)
    
    with gr.Tab("Resume Quality Score 🌟"):
        with gr.Row():
            resume = gr.File(label="Upload your Resume (PDF)")
            interpretation = gr.Textbox(label="Interpretation", interactive=False, lines=15, max_lines=50)
        resume.upload(resume_quality_score, resume, interpretation)
    
    with gr.Tab("Text to Overleaf Code πŸ–‹οΈ"):
        with gr.Row():
            resume_text = gr.Textbox(label="Resume Text", placeholder="Enter your resume text here or paste the example below:\n\nJohn Doe\n\nExperience\n- Software Engineer at Company A\n- Data Scientist at Company B\n\nEducation\n- BSc in Computer Science")
            overleaf_code = gr.Textbox(label="Overleaf Code", interactive=False, lines=15, max_lines=50)
        resume_text.submit(text_to_overleaf, resume_text, overleaf_code)
        gr.Markdown("Paste the generated code into [Overleaf](https://www.overleaf.com/) to create your resume.")

    gr.Markdown("---\nBuilt with love by [Bahae Eddine HALIM](https://www.linkedin.com/in/halimbahae/)")

if __name__ == "__main__":
    demo.launch(share=True)