Spaces:
Running
Running
File size: 22,090 Bytes
e73da9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 |
import torch
from tqdm import tqdm
# from torchvision import transforms as T
from typing import List, Optional, Dict, Union
from models import PipelineWrapper
def mu_tilde(model, xt, x0, timestep):
"mu_tilde(x_t, x_0) DDPM paper eq. 7"
prev_timestep = timestep - model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps
alpha_prod_t_prev = model.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 \
else model.scheduler.final_alpha_cumprod
alpha_t = model.scheduler.alphas[timestep]
beta_t = 1 - alpha_t
alpha_bar = model.scheduler.alphas_cumprod[timestep]
return ((alpha_prod_t_prev ** 0.5 * beta_t) / (1-alpha_bar)) * x0 + \
((alpha_t**0.5 * (1-alpha_prod_t_prev)) / (1 - alpha_bar)) * xt
def sample_xts_from_x0(model, x0, num_inference_steps=50, x_prev_mode=False):
"""
Samples from P(x_1:T|x_0)
"""
# torch.manual_seed(43256465436)
alpha_bar = model.model.scheduler.alphas_cumprod
sqrt_one_minus_alpha_bar = (1-alpha_bar) ** 0.5
alphas = model.model.scheduler.alphas
# betas = 1 - alphas
variance_noise_shape = (
num_inference_steps + 1,
model.model.unet.config.in_channels,
# model.unet.sample_size,
# model.unet.sample_size)
x0.shape[-2],
x0.shape[-1])
timesteps = model.model.scheduler.timesteps.to(model.device)
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xts = torch.zeros(variance_noise_shape).to(x0.device)
xts[0] = x0
x_prev = x0
for t in reversed(timesteps):
# idx = t_to_idx[int(t)]
idx = num_inference_steps-t_to_idx[int(t)]
if x_prev_mode:
xts[idx] = x_prev * (alphas[t] ** 0.5) + torch.randn_like(x0) * ((1-alphas[t]) ** 0.5)
x_prev = xts[idx].clone()
else:
xts[idx] = x0 * (alpha_bar[t] ** 0.5) + torch.randn_like(x0) * sqrt_one_minus_alpha_bar[t]
# xts = torch.cat([xts, x0 ],dim = 0)
return xts
def forward_step(model, model_output, timestep, sample):
next_timestep = min(model.scheduler.config.num_train_timesteps - 2,
timestep + model.scheduler.config.num_train_timesteps // model.scheduler.num_inference_steps)
# 2. compute alphas, betas
alpha_prod_t = model.scheduler.alphas_cumprod[timestep]
# alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] if next_ltimestep >= 0 \
# else self.scheduler.final_alpha_cumprod
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
# 5. TODO: simple noising implementatiom
next_sample = model.scheduler.add_noise(pred_original_sample, model_output, torch.LongTensor([next_timestep]))
return next_sample
def inversion_forward_process(model: PipelineWrapper,
x0: torch.Tensor,
etas: Optional[float] = None,
prog_bar: bool = False,
prompts: List[str] = [""],
cfg_scales: List[float] = [3.5],
num_inference_steps: int = 50,
eps: Optional[float] = None,
cutoff_points: Optional[List[float]] = None,
numerical_fix: bool = False,
extract_h_space: bool = False,
extract_skipconns: bool = False,
x_prev_mode: bool = False):
if len(prompts) > 1 and extract_h_space:
raise NotImplementedError("How do you split cfg_scales for hspace? TODO")
if len(prompts) > 1 or prompts[0] != "":
text_embeddings_hidden_states, text_embeddings_class_labels, \
text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
# text_embeddings = encode_text(model, prompt)
# # classifier free guidance
batch_size = len(prompts)
cfg_scales_tensor = torch.ones((batch_size, *x0.shape[1:]), device=model.device, dtype=x0.dtype)
# if len(prompts) > 1:
# if cutoff_points is None:
# cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)]
# if len(cfg_scales) == 1:
# cfg_scales *= batch_size
# elif len(cfg_scales) < batch_size:
# raise ValueError("Not enough target CFG scales")
# cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points]
# cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]]
# for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])):
# cfg_scales_tensor[i, :, end:] = 0
# cfg_scales_tensor[i, :, :start] = 0
# cfg_scales_tensor[i] *= cfg_scales[i]
# if prompts[i] == "":
# cfg_scales_tensor[i] = 0
# cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1)
# else:
cfg_scales_tensor *= cfg_scales[0]
uncond_embedding_hidden_states, uncond_embedding_class_lables, uncond_boolean_prompt_mask = model.encode_text([""])
# uncond_embedding = encode_text(model, "")
timesteps = model.model.scheduler.timesteps.to(model.device)
variance_noise_shape = (
num_inference_steps,
model.model.unet.config.in_channels,
# model.unet.sample_size,
# model.unet.sample_size)
x0.shape[-2],
x0.shape[-1])
if etas is None or (type(etas) in [int, float] and etas == 0):
eta_is_zero = True
zs = None
else:
eta_is_zero = False
if type(etas) in [int, float]:
etas = [etas]*model.model.scheduler.num_inference_steps
xts = sample_xts_from_x0(model, x0, num_inference_steps=num_inference_steps, x_prev_mode=x_prev_mode)
alpha_bar = model.model.scheduler.alphas_cumprod
zs = torch.zeros(size=variance_noise_shape, device=model.device)
hspaces = []
skipconns = []
t_to_idx = {int(v): k for k, v in enumerate(timesteps)}
xt = x0
# op = tqdm(reversed(timesteps)) if prog_bar else reversed(timesteps)
op = tqdm(timesteps) if prog_bar else timesteps
for t in op:
# idx = t_to_idx[int(t)]
idx = num_inference_steps - t_to_idx[int(t)] - 1
# 1. predict noise residual
if not eta_is_zero:
xt = xts[idx+1][None]
with torch.no_grad():
out, out_hspace, out_skipconns = model.unet_forward(xt, timestep=t,
encoder_hidden_states=uncond_embedding_hidden_states,
class_labels=uncond_embedding_class_lables,
encoder_attention_mask=uncond_boolean_prompt_mask)
# out = model.unet.forward(xt, timestep= t, encoder_hidden_states=uncond_embedding)
if len(prompts) > 1 or prompts[0] != "":
cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward(
xt.expand(len(prompts), -1, -1, -1), timestep=t,
encoder_hidden_states=text_embeddings_hidden_states,
class_labels=text_embeddings_class_labels,
encoder_attention_mask=text_embeddings_boolean_prompt_mask)
# cond_out = model.unet.forward(xt, timestep=t, encoder_hidden_states = text_embeddings)
if len(prompts) > 1 or prompts[0] != "":
# # classifier free guidance
noise_pred = out.sample + \
(cfg_scales_tensor * (cond_out.sample - out.sample.expand(batch_size, -1, -1, -1))
).sum(axis=0).unsqueeze(0)
if extract_h_space or extract_skipconns:
noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace)
if extract_skipconns:
noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] *
(cond_out_skipconns[k][j] - out_skipconns[k][j])
for j in range(len(out_skipconns[k]))]
for k in out_skipconns}
else:
noise_pred = out.sample
if extract_h_space or extract_skipconns:
noise_h_space = out_hspace
if extract_skipconns:
noise_skipconns = out_skipconns
if extract_h_space or extract_skipconns:
hspaces.append(noise_h_space)
if extract_skipconns:
skipconns.append(noise_skipconns)
if eta_is_zero:
# 2. compute more noisy image and set x_t -> x_t+1
xt = forward_step(model.model, noise_pred, t, xt)
else:
# xtm1 = xts[idx+1][None]
xtm1 = xts[idx][None]
# pred of x0
if model.model.scheduler.config.prediction_type == 'epsilon':
pred_original_sample = (xt - (1 - alpha_bar[t]) ** 0.5 * noise_pred) / alpha_bar[t] ** 0.5
elif model.model.scheduler.config.prediction_type == 'v_prediction':
pred_original_sample = (alpha_bar[t] ** 0.5) * xt - ((1 - alpha_bar[t]) ** 0.5) * noise_pred
# direction to xt
prev_timestep = t - model.model.scheduler.config.num_train_timesteps // \
model.model.scheduler.num_inference_steps
alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep)
variance = model.get_variance(t, prev_timestep)
if model.model.scheduler.config.prediction_type == 'epsilon':
radom_noise_pred = noise_pred
elif model.model.scheduler.config.prediction_type == 'v_prediction':
radom_noise_pred = (alpha_bar[t] ** 0.5) * noise_pred + ((1 - alpha_bar[t]) ** 0.5) * xt
pred_sample_direction = (1 - alpha_prod_t_prev - etas[idx] * variance) ** (0.5) * radom_noise_pred
mu_xt = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
z = (xtm1 - mu_xt) / (etas[idx] * variance ** 0.5)
zs[idx] = z
# correction to avoid error accumulation
if numerical_fix:
xtm1 = mu_xt + (etas[idx] * variance ** 0.5)*z
xts[idx] = xtm1
if zs is not None:
# zs[-1] = torch.zeros_like(zs[-1])
zs[0] = torch.zeros_like(zs[0])
# zs_cycle[0] = torch.zeros_like(zs[0])
if extract_h_space:
hspaces = torch.concat(hspaces, axis=0)
return xt, zs, xts, hspaces
if extract_skipconns:
hspaces = torch.concat(hspaces, axis=0)
return xt, zs, xts, hspaces, skipconns
return xt, zs, xts
def reverse_step(model, model_output, timestep, sample, eta=0, variance_noise=None):
# 1. get previous step value (=t-1)
prev_timestep = timestep - model.model.scheduler.config.num_train_timesteps // \
model.model.scheduler.num_inference_steps
# 2. compute alphas, betas
alpha_prod_t = model.model.scheduler.alphas_cumprod[timestep]
alpha_prod_t_prev = model.get_alpha_prod_t_prev(prev_timestep)
beta_prod_t = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
if model.model.scheduler.config.prediction_type == 'epsilon':
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
elif model.model.scheduler.config.prediction_type == 'v_prediction':
pred_original_sample = (alpha_prod_t ** 0.5) * sample - (beta_prod_t ** 0.5) * model_output
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
# variance = self.scheduler._get_variance(timestep, prev_timestep)
variance = model.get_variance(timestep, prev_timestep)
# std_dev_t = eta * variance ** (0.5)
# Take care of asymetric reverse process (asyrp)
if model.model.scheduler.config.prediction_type == 'epsilon':
model_output_direction = model_output
elif model.model.scheduler.config.prediction_type == 'v_prediction':
model_output_direction = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
# pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output_direction
pred_sample_direction = (1 - alpha_prod_t_prev - eta * variance) ** (0.5) * model_output_direction
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
# 8. Add noice if eta > 0
if eta > 0:
if variance_noise is None:
variance_noise = torch.randn(model_output.shape, device=model.device)
sigma_z = eta * variance ** (0.5) * variance_noise
prev_sample = prev_sample + sigma_z
return prev_sample
def inversion_reverse_process(model: PipelineWrapper,
xT: torch.Tensor,
skips: torch.Tensor,
fix_alpha: float = 0.1,
etas: float = 0,
prompts: List[str] = [""],
neg_prompts: List[str] = [""],
cfg_scales: Optional[List[float]] = None,
prog_bar: bool = False,
zs: Optional[List[torch.Tensor]] = None,
# controller=None,
cutoff_points: Optional[List[float]] = None,
hspace_add: Optional[torch.Tensor] = None,
hspace_replace: Optional[torch.Tensor] = None,
skipconns_replace: Optional[Dict[int, torch.Tensor]] = None,
zero_out_resconns: Optional[Union[int, List]] = None,
asyrp: bool = False,
extract_h_space: bool = False,
extract_skipconns: bool = False):
batch_size = len(prompts)
text_embeddings_hidden_states, text_embeddings_class_labels, \
text_embeddings_boolean_prompt_mask = model.encode_text(prompts)
uncond_embedding_hidden_states, uncond_embedding_class_lables, \
uncond_boolean_prompt_mask = model.encode_text(neg_prompts)
# text_embeddings = encode_text(model, prompts)
# uncond_embedding = encode_text(model, [""] * batch_size)
masks = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype)
cfg_scales_tensor = torch.ones((batch_size, *xT.shape[1:]), device=model.device, dtype=xT.dtype)
# if batch_size > 1:
# if cutoff_points is None:
# cutoff_points = [i * 1 / batch_size for i in range(1, batch_size)]
# if len(cfg_scales) == 1:
# cfg_scales *= batch_size
# elif len(cfg_scales) < batch_size:
# raise ValueError("Not enough target CFG scales")
# cutoff_points = [int(x * cfg_scales_tensor.shape[2]) for x in cutoff_points]
# cutoff_points = [0, *cutoff_points, cfg_scales_tensor.shape[2]]
# for i, (start, end) in enumerate(zip(cutoff_points[:-1], cutoff_points[1:])):
# cfg_scales_tensor[i, :, end:] = 0
# cfg_scales_tensor[i, :, :start] = 0
# masks[i, :, end:] = 0
# masks[i, :, :start] = 0
# cfg_scales_tensor[i] *= cfg_scales[i]
# cfg_scales_tensor = T.functional.gaussian_blur(cfg_scales_tensor, kernel_size=15, sigma=1)
# masks = T.functional.gaussian_blur(masks, kernel_size=15, sigma=1)
# else:
cfg_scales_tensor *= cfg_scales[0]
if etas is None:
etas = 0
if type(etas) in [int, float]:
etas = [etas]*model.model.scheduler.num_inference_steps
assert len(etas) == model.model.scheduler.num_inference_steps
timesteps = model.model.scheduler.timesteps.to(model.device)
# xt = xT.expand(1, -1, -1, -1)
xt = xT[skips.max()].unsqueeze(0)
op = tqdm(timesteps[-zs.shape[0]:]) if prog_bar else timesteps[-zs.shape[0]:]
t_to_idx = {int(v): k for k, v in enumerate(timesteps[-zs.shape[0]:])}
hspaces = []
skipconns = []
for it, t in enumerate(op):
# idx = t_to_idx[int(t)]
idx = model.model.scheduler.num_inference_steps - t_to_idx[int(t)] - \
(model.model.scheduler.num_inference_steps - zs.shape[0] + 1)
# # Unconditional embedding
with torch.no_grad():
uncond_out, out_hspace, out_skipconns = model.unet_forward(
xt, timestep=t,
encoder_hidden_states=uncond_embedding_hidden_states,
class_labels=uncond_embedding_class_lables,
encoder_attention_mask=uncond_boolean_prompt_mask,
mid_block_additional_residual=(None if hspace_add is None else
(1 / (cfg_scales[0] + 1)) *
(hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1
else hspace_add)),
replace_h_space=(None if hspace_replace is None else
(hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1
else hspace_replace)),
zero_out_resconns=zero_out_resconns,
replace_skip_conns=(None if skipconns_replace is None else
(skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1
else skipconns_replace))
) # encoder_hidden_states = uncond_embedding)
# # Conditional embedding
if prompts:
with torch.no_grad():
cond_out, cond_out_hspace, cond_out_skipconns = model.unet_forward(
xt.expand(batch_size, -1, -1, -1),
timestep=t,
encoder_hidden_states=text_embeddings_hidden_states,
class_labels=text_embeddings_class_labels,
encoder_attention_mask=text_embeddings_boolean_prompt_mask,
mid_block_additional_residual=(None if hspace_add is None else
(cfg_scales[0] / (cfg_scales[0] + 1)) *
(hspace_add[-zs.shape[0]:][it] if hspace_add.shape[0] > 1
else hspace_add)),
replace_h_space=(None if hspace_replace is None else
(hspace_replace[-zs.shape[0]:][it].unsqueeze(0) if hspace_replace.shape[0] > 1
else hspace_replace)),
zero_out_resconns=zero_out_resconns,
replace_skip_conns=(None if skipconns_replace is None else
(skipconns_replace[-zs.shape[0]:][it] if len(skipconns_replace) > 1
else skipconns_replace))
) # encoder_hidden_states = text_embeddings)
z = zs[idx] if zs is not None else None
# print(f'idx: {idx}')
# print(f't: {t}')
z = z.unsqueeze(0)
# z = z.expand(batch_size, -1, -1, -1)
if prompts:
# # classifier free guidance
# noise_pred = uncond_out.sample + cfg_scales_tensor * (cond_out.sample - uncond_out.sample)
noise_pred = uncond_out.sample + \
(cfg_scales_tensor * (cond_out.sample - uncond_out.sample.expand(batch_size, -1, -1, -1))
).sum(axis=0).unsqueeze(0)
if extract_h_space or extract_skipconns:
noise_h_space = out_hspace + cfg_scales[0] * (cond_out_hspace - out_hspace)
if extract_skipconns:
noise_skipconns = {k: [out_skipconns[k][j] + cfg_scales[0] *
(cond_out_skipconns[k][j] - out_skipconns[k][j])
for j in range(len(out_skipconns[k]))]
for k in out_skipconns}
else:
noise_pred = uncond_out.sample
if extract_h_space or extract_skipconns:
noise_h_space = out_hspace
if extract_skipconns:
noise_skipconns = out_skipconns
if extract_h_space or extract_skipconns:
hspaces.append(noise_h_space)
if extract_skipconns:
skipconns.append(noise_skipconns)
# 2. compute less noisy image and set x_t -> x_t-1
xt = reverse_step(model, noise_pred, t, xt, eta=etas[idx], variance_noise=z)
# if controller is not None:
# xt = controller.step_callback(xt)
# "fix" xt
apply_fix = ((skips.max() - skips) > it)
if apply_fix.any():
apply_fix = (apply_fix * fix_alpha).unsqueeze(1).unsqueeze(2).unsqueeze(3).to(xT.device)
xt = (masks * (xt.expand(batch_size, -1, -1, -1) * (1 - apply_fix) +
apply_fix * xT[skips.max() - it - 1].expand(batch_size, -1, -1, -1))
).sum(axis=0).unsqueeze(0)
if extract_h_space:
return xt, zs, torch.concat(hspaces, axis=0)
if extract_skipconns:
return xt, zs, torch.concat(hspaces, axis=0), skipconns
return xt, zs
|