File size: 104,298 Bytes
1e8c453
eeb7ca1
 
 
 
 
 
 
 
1e8c453
eeb7ca1
1e8c453
eeb7ca1
 
 
 
 
 
1e8c453
eeb7ca1
1e8c453
 
eeb7ca1
 
 
1e8c453
 
 
eeb7ca1
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
eeb7ca1
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539589
eeb7ca1
 
 
0539589
 
 
 
 
 
 
eeb7ca1
 
 
1e8c453
eeb7ca1
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
1e8c453
eeb7ca1
1e8c453
 
eeb7ca1
 
 
 
 
 
1e8c453
 
 
 
 
 
 
eeb7ca1
 
0539589
 
 
 
 
 
 
 
 
 
 
eeb7ca1
1e8c453
0539589
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
eeb7ca1
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
eeb7ca1
 
 
 
1e8c453
eeb7ca1
1e8c453
eeb7ca1
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
1e8c453
eeb7ca1
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
1e8c453
 
eeb7ca1
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
eeb7ca1
 
 
 
 
 
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
1e8c453
 
eeb7ca1
 
 
 
1e8c453
eeb7ca1
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
0539589
eeb7ca1
 
 
0539589
 
 
 
 
 
 
eeb7ca1
 
 
 
1e8c453
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
0539589
eeb7ca1
1e8c453
 
 
eeb7ca1
0539589
eeb7ca1
 
 
0539589
 
 
 
 
 
 
eeb7ca1
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
1e8c453
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
 
1e8c453
eeb7ca1
 
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
eeb7ca1
1e8c453
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
 
eeb7ca1
 
1e8c453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eeb7ca1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539589
eeb7ca1
 
 
 
 
 
 
 
1e8c453
 
 
 
 
 
 
 
eeb7ca1
1e8c453
eeb7ca1
 
 
 
0539589
eeb7ca1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
import ast
import glob
import inspect
import os
import pathlib
import pickle
import shutil
import subprocess
import tempfile
import time
import traceback
import types
import uuid
import zipfile
from collections import defaultdict
from datetime import datetime
from functools import reduce
from operator import concat
import filelock

from joblib import delayed
from langchain.callbacks import streaming_stdout
from langchain.embeddings import HuggingFaceInstructEmbeddings
from tqdm import tqdm

from enums import DocumentChoices, no_lora_str, model_token_mapping, source_prefix, source_postfix
from generate import gen_hyper, get_model, SEED
from prompter import non_hf_types, PromptType, Prompter
from utils import wrapped_partial, EThread, import_matplotlib, sanitize_filename, makedirs, get_url, flatten_list, \
    get_device, ProgressParallel, remove, hash_file, clear_torch_cache, NullContext, get_hf_server, FakeTokenizer
from utils_langchain import StreamingGradioCallbackHandler

import_matplotlib()

import numpy as np
import pandas as pd
import requests
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# , GCSDirectoryLoader, GCSFileLoader
# , OutlookMessageLoader # GPL3
# ImageCaptionLoader, # use our own wrapper
#  ReadTheDocsLoader,  # no special file, some path, so have to give as special option
from langchain.document_loaders import PyPDFLoader, TextLoader, CSVLoader, PythonLoader, TomlLoader, \
    UnstructuredURLLoader, UnstructuredHTMLLoader, UnstructuredWordDocumentLoader, UnstructuredMarkdownLoader, \
    EverNoteLoader, UnstructuredEmailLoader, UnstructuredODTLoader, UnstructuredPowerPointLoader, \
    UnstructuredEPubLoader, UnstructuredImageLoader, UnstructuredRTFLoader, ArxivLoader, UnstructuredPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter, Language
from langchain.chains.question_answering import load_qa_chain
from langchain.docstore.document import Document
from langchain import PromptTemplate, HuggingFaceTextGenInference
from langchain.vectorstores import Chroma


def get_db(sources, use_openai_embedding=False, db_type='faiss',
           persist_directory="db_dir", load_db_if_exists=True,
           langchain_mode='notset',
           collection_name=None,
           hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
    if not sources:
        return None

    # get embedding model
    embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
    assert collection_name is not None or langchain_mode != 'notset'
    if collection_name is None:
        collection_name = langchain_mode.replace(' ', '_')

    # Create vector database
    if db_type == 'faiss':
        from langchain.vectorstores import FAISS
        db = FAISS.from_documents(sources, embedding)
    elif db_type == 'weaviate':
        import weaviate
        from weaviate.embedded import EmbeddedOptions
        from langchain.vectorstores import Weaviate

        if os.getenv('WEAVIATE_URL', None):
            client = _create_local_weaviate_client()
        else:
            client = weaviate.Client(
                embedded_options=EmbeddedOptions()
            )
        index_name = collection_name.capitalize()
        db = Weaviate.from_documents(documents=sources, embedding=embedding, client=client, by_text=False,
                                     index_name=index_name)
    elif db_type == 'chroma':
        assert persist_directory is not None
        os.makedirs(persist_directory, exist_ok=True)

        # see if already actually have persistent db, and deal with possible changes in embedding
        db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
                             hf_embedding_model, verbose=False)
        if db is None:
            db = Chroma.from_documents(documents=sources,
                                       embedding=embedding,
                                       persist_directory=persist_directory,
                                       collection_name=collection_name,
                                       anonymized_telemetry=False)
            db.persist()
            clear_embedding(db)
            save_embed(db, use_openai_embedding, hf_embedding_model)
        else:
            # then just add
            db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
                                                                  use_openai_embedding=use_openai_embedding,
                                                                  hf_embedding_model=hf_embedding_model)
    else:
        raise RuntimeError("No such db_type=%s" % db_type)

    return db


def _get_unique_sources_in_weaviate(db):
    batch_size = 100
    id_source_list = []
    result = db._client.data_object.get(class_name=db._index_name, limit=batch_size)

    while result['objects']:
        id_source_list += [(obj['id'], obj['properties']['source']) for obj in result['objects']]
        last_id = id_source_list[-1][0]
        result = db._client.data_object.get(class_name=db._index_name, limit=batch_size, after=last_id)

    unique_sources = {source for _, source in id_source_list}
    return unique_sources


def add_to_db(db, sources, db_type='faiss',
              avoid_dup_by_file=False,
              avoid_dup_by_content=True,
              use_openai_embedding=False,
              hf_embedding_model=None):
    assert hf_embedding_model is not None
    num_new_sources = len(sources)
    if not sources:
        return db, num_new_sources, []
    if db_type == 'faiss':
        db.add_documents(sources)
    elif db_type == 'weaviate':
        # FIXME: only control by file name, not hash yet
        if avoid_dup_by_file or avoid_dup_by_content:
            unique_sources = _get_unique_sources_in_weaviate(db)
            sources = [x for x in sources if x.metadata['source'] not in unique_sources]
        num_new_sources = len(sources)
        if num_new_sources == 0:
            return db, num_new_sources, []
        db.add_documents(documents=sources)
    elif db_type == 'chroma':
        collection = get_documents(db)
        # files we already have:
        metadata_files = set([x['source'] for x in collection['metadatas']])
        if avoid_dup_by_file:
            # Too weak in case file changed content, assume parent shouldn't pass true for this for now
            raise RuntimeError("Not desired code path")
            sources = [x for x in sources if x.metadata['source'] not in metadata_files]
        if avoid_dup_by_content:
            # look at hash, instead of page_content
            # migration: If no hash previously, avoid updating,
            #  since don't know if need to update and may be expensive to redo all unhashed files
            metadata_hash_ids = set(
                [x['hashid'] for x in collection['metadatas'] if 'hashid' in x and x['hashid'] not in ["None", None]])
            # avoid sources with same hash
            sources = [x for x in sources if x.metadata.get('hashid') not in metadata_hash_ids]
            num_nohash = len([x for x in sources if not x.metadata.get('hashid')])
            print("Found %s new sources (%d have no hash in original source,"
                  " so have to reprocess for migration to sources with hash)" % (len(sources), num_nohash), flush=True)
            # get new file names that match existing file names.  delete existing files we are overridding
            dup_metadata_files = set([x.metadata['source'] for x in sources if x.metadata['source'] in metadata_files])
            print("Removing %s duplicate files from db because ingesting those as new documents" % len(
                dup_metadata_files), flush=True)
            client_collection = db._client.get_collection(name=db._collection.name,
                                                          embedding_function=db._collection._embedding_function)
            for dup_file in dup_metadata_files:
                dup_file_meta = dict(source=dup_file)
                try:
                    client_collection.delete(where=dup_file_meta)
                except KeyError:
                    pass
        num_new_sources = len(sources)
        if num_new_sources == 0:
            return db, num_new_sources, []
        db.add_documents(documents=sources)
        db.persist()
        clear_embedding(db)
        save_embed(db, use_openai_embedding, hf_embedding_model)
    else:
        raise RuntimeError("No such db_type=%s" % db_type)

    new_sources_metadata = [x.metadata for x in sources]

    return db, num_new_sources, new_sources_metadata


def create_or_update_db(db_type, persist_directory, collection_name,
                        sources, use_openai_embedding, add_if_exists, verbose, hf_embedding_model):
    if db_type == 'weaviate':
        import weaviate
        from weaviate.embedded import EmbeddedOptions

        if os.getenv('WEAVIATE_URL', None):
            client = _create_local_weaviate_client()
        else:
            client = weaviate.Client(
                embedded_options=EmbeddedOptions()
            )

        index_name = collection_name.replace(' ', '_').capitalize()
        if client.schema.exists(index_name) and not add_if_exists:
            client.schema.delete_class(index_name)
            if verbose:
                print("Removing %s" % index_name, flush=True)
    elif db_type == 'chroma':
        if not os.path.isdir(persist_directory) or not add_if_exists:
            if os.path.isdir(persist_directory):
                if verbose:
                    print("Removing %s" % persist_directory, flush=True)
                remove(persist_directory)
            if verbose:
                print("Generating db", flush=True)

    if not add_if_exists:
        if verbose:
            print("Generating db", flush=True)
    else:
        if verbose:
            print("Loading and updating db", flush=True)

    db = get_db(sources,
                use_openai_embedding=use_openai_embedding,
                db_type=db_type,
                persist_directory=persist_directory,
                langchain_mode=collection_name,
                hf_embedding_model=hf_embedding_model)

    return db


def get_embedding(use_openai_embedding, hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2"):
    # Get embedding model
    if use_openai_embedding:
        assert os.getenv("OPENAI_API_KEY") is not None, "Set ENV OPENAI_API_KEY"
        from langchain.embeddings import OpenAIEmbeddings
        embedding = OpenAIEmbeddings(disallowed_special=())
    else:
        # to ensure can fork without deadlock
        from langchain.embeddings import HuggingFaceEmbeddings

        device, torch_dtype, context_class = get_device_dtype()
        model_kwargs = dict(device=device)
        if 'instructor' in hf_embedding_model:
            encode_kwargs = {'normalize_embeddings': True}
            embedding = HuggingFaceInstructEmbeddings(model_name=hf_embedding_model,
                                                      model_kwargs=model_kwargs,
                                                      encode_kwargs=encode_kwargs)
        else:
            embedding = HuggingFaceEmbeddings(model_name=hf_embedding_model, model_kwargs=model_kwargs)
    return embedding


def get_answer_from_sources(chain, sources, question):
    return chain(
        {
            "input_documents": sources,
            "question": question,
        },
        return_only_outputs=True,
    )["output_text"]


"""Wrapper around Huggingface text generation inference API."""
from functools import partial
from typing import Any, Dict, List, Optional, Set

from pydantic import Extra, Field, root_validator

from langchain.callbacks.manager import CallbackManagerForLLMRun

"""Wrapper around Huggingface text generation inference API."""
from functools import partial
from typing import Any, Dict, List, Optional

from pydantic import Extra, Field, root_validator

from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms.base import LLM


class GradioInference(LLM):
    """
    Gradio generation inference API.
    """
    inference_server_url: str = ""

    temperature: float = 0.8
    top_p: Optional[float] = 0.95
    top_k: Optional[int] = None
    num_beams: Optional[int] = 1
    max_new_tokens: int = 512
    min_new_tokens: int = 1
    early_stopping: bool = False
    max_time: int = 180
    repetition_penalty: Optional[float] = None
    num_return_sequences: Optional[int] = 1
    do_sample: bool = False
    chat_client: bool = False

    return_full_text: bool = True
    stream: bool = False
    sanitize_bot_response: bool = False

    prompter: Any = None
    client: Any = None

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that python package exists in environment."""

        try:
            if values['client'] is None:
                import gradio_client
                values["client"] = gradio_client.Client(
                    values["inference_server_url"]
                )
        except ImportError:
            raise ImportError(
                "Could not import gradio_client python package. "
                "Please install it with `pip install gradio_client`."
            )
        return values

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "gradio_inference"

    def _call(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any,
    ) -> str:
        # NOTE: prompt here has no prompt_type (e.g. human: bot:) prompt injection,
        # so server should get prompt_type or '', not plain
        # This is good, so gradio server can also handle stopping.py conditions
        # this is different than TGI server that uses prompter to inject prompt_type prompting
        stream_output = self.stream
        gr_client = self.client
        client_langchain_mode = 'Disabled'
        top_k_docs = 1
        chunk = True
        chunk_size = 512
        client_kwargs = dict(instruction=prompt if self.chat_client else '',  # only for chat=True
                             iinput='',  # only for chat=True
                             context='',
                             # streaming output is supported, loops over and outputs each generation in streaming mode
                             # but leave stream_output=False for simple input/output mode
                             stream_output=stream_output,
                             prompt_type=self.prompter.prompt_type,
                             prompt_dict='',

                             temperature=self.temperature,
                             top_p=self.top_p,
                             top_k=self.top_k,
                             num_beams=self.num_beams,
                             max_new_tokens=self.max_new_tokens,
                             min_new_tokens=self.min_new_tokens,
                             early_stopping=self.early_stopping,
                             max_time=self.max_time,
                             repetition_penalty=self.repetition_penalty,
                             num_return_sequences=self.num_return_sequences,
                             do_sample=self.do_sample,
                             chat=self.chat_client,

                             instruction_nochat=prompt if not self.chat_client else '',
                             iinput_nochat='',  # only for chat=False
                             langchain_mode=client_langchain_mode,
                             top_k_docs=top_k_docs,
                             chunk=chunk,
                             chunk_size=chunk_size,
                             document_choice=[DocumentChoices.All_Relevant.name],
                             )
        api_name = '/submit_nochat_api'  # NOTE: like submit_nochat but stable API for string dict passing
        if not stream_output:
            res = gr_client.predict(str(dict(client_kwargs)), api_name=api_name)
            res_dict = ast.literal_eval(res)
            text = res_dict['response']
            return self.prompter.get_response(prompt + text, prompt=prompt,
                                              sanitize_bot_response=self.sanitize_bot_response)
        else:
            text_callback = None
            if run_manager:
                text_callback = partial(
                    run_manager.on_llm_new_token, verbose=self.verbose
                )

            job = gr_client.submit(str(dict(client_kwargs)), api_name=api_name)
            text0 = ''
            while not job.done():
                outputs_list = job.communicator.job.outputs
                if outputs_list:
                    res = job.communicator.job.outputs[-1]
                    res_dict = ast.literal_eval(res)
                    text = res_dict['response']
                    text = self.prompter.get_response(prompt + text, prompt=prompt,
                                                      sanitize_bot_response=self.sanitize_bot_response)
                    # FIXME: derive chunk from full for now
                    text_chunk = text[len(text0):]
                    # save old
                    text0 = text

                    if text_callback:
                        text_callback(text_chunk)

                time.sleep(0.01)

            # ensure get last output to avoid race
            res_all = job.outputs()
            if len(res_all) > 0:
                res = res_all[-1]
                res_dict = ast.literal_eval(res)
                text = res_dict['response']
                # FIXME: derive chunk from full for now
            else:
                # go with old if failure
                text = text0
            text_chunk = text[len(text0):]
            if text_callback:
                text_callback(text_chunk)
            return self.prompter.get_response(prompt + text, prompt=prompt,
                                              sanitize_bot_response=self.sanitize_bot_response)


class H2OHuggingFaceTextGenInference(HuggingFaceTextGenInference):
    max_new_tokens: int = 512
    do_sample: bool = False
    top_k: Optional[int] = None
    top_p: Optional[float] = 0.95
    typical_p: Optional[float] = 0.95
    temperature: float = 0.8
    repetition_penalty: Optional[float] = None
    return_full_text: bool = False
    stop_sequences: List[str] = Field(default_factory=list)
    seed: Optional[int] = None
    inference_server_url: str = ""
    timeout: int = 300
    headers: dict = None
    stream: bool = False
    sanitize_bot_response: bool = False
    prompter: Any = None
    tokenizer: Any = None
    client: Any = None

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that python package exists in environment."""

        try:
            if values['client'] is None:
                import text_generation

                values["client"] = text_generation.Client(
                    values["inference_server_url"],
                    timeout=values["timeout"],
                    headers=values["headers"],
                )
        except ImportError:
            raise ImportError(
                "Could not import text_generation python package. "
                "Please install it with `pip install text_generation`."
            )
        return values

    def _call(
            self,
            prompt: str,
            stop: Optional[List[str]] = None,
            run_manager: Optional[CallbackManagerForLLMRun] = None,
            **kwargs: Any,
    ) -> str:
        if stop is None:
            stop = self.stop_sequences
        else:
            stop += self.stop_sequences

        # HF inference server needs control over input tokens
        assert self.tokenizer is not None
        from h2oai_pipeline import H2OTextGenerationPipeline
        prompt, num_prompt_tokens = H2OTextGenerationPipeline.limit_prompt(prompt, self.tokenizer)

        # NOTE: TGI server does not add prompting, so must do here
        data_point = dict(context='', instruction=prompt, input='')
        prompt = self.prompter.generate_prompt(data_point)

        gen_server_kwargs = dict(do_sample=self.do_sample,
                                 stop_sequences=stop,
                                 max_new_tokens=self.max_new_tokens,
                                 top_k=self.top_k,
                                 top_p=self.top_p,
                                 typical_p=self.typical_p,
                                 temperature=self.temperature,
                                 repetition_penalty=self.repetition_penalty,
                                 return_full_text=self.return_full_text,
                                 seed=self.seed,
                                 )
        gen_server_kwargs.update(kwargs)

        # lower bound because client is re-used if multi-threading
        self.client.timeout = max(300, self.timeout)

        if not self.stream:
            res = self.client.generate(
                prompt,
                **gen_server_kwargs,
            )
            if self.return_full_text:
                gen_text = res.generated_text[len(prompt):]
            else:
                gen_text = res.generated_text
            # remove stop sequences from the end of the generated text
            for stop_seq in stop:
                if stop_seq in gen_text:
                    gen_text = gen_text[:gen_text.index(stop_seq)]
            text = prompt + gen_text
            text = self.prompter.get_response(text, prompt=prompt,
                                              sanitize_bot_response=self.sanitize_bot_response)
        else:
            text_callback = None
            if run_manager:
                text_callback = partial(
                    run_manager.on_llm_new_token, verbose=self.verbose
                )
            # parent handler of streamer expects to see prompt first else output="" and lose if prompt=None in prompter
            if text_callback:
                text_callback(prompt)
            text = ""
            # Note: Streaming ignores return_full_text=True
            for response in self.client.generate_stream(prompt, **gen_server_kwargs):
                text_chunk = response.token.text
                text += text_chunk
                text = self.prompter.get_response(prompt + text, prompt=prompt,
                                                  sanitize_bot_response=self.sanitize_bot_response)
                # stream part
                is_stop = False
                for stop_seq in stop:
                    if stop_seq in response.token.text:
                        is_stop = True
                        break
                if is_stop:
                    break
                if not response.token.special:
                    if text_callback:
                        text_callback(response.token.text)
        return text


from langchain.chat_models import ChatOpenAI


class H2OChatOpenAI(ChatOpenAI):
    @classmethod
    def all_required_field_names(cls) -> Set:
        all_required_field_names = super(ChatOpenAI, cls).all_required_field_names()
        all_required_field_names.update({'top_p', 'frequency_penalty', 'presence_penalty'})
        return all_required_field_names


def get_llm(use_openai_model=False,
            model_name=None,
            model=None,
            tokenizer=None,
            inference_server=None,
            stream_output=False,
            do_sample=False,
            temperature=0.1,
            top_k=40,
            top_p=0.7,
            num_beams=1,
            max_new_tokens=256,
            min_new_tokens=1,
            early_stopping=False,
            max_time=180,
            repetition_penalty=1.0,
            num_return_sequences=1,
            prompt_type=None,
            prompt_dict=None,
            prompter=None,
            sanitize_bot_response=False,
            verbose=False,
            ):
    if use_openai_model or inference_server in ['openai', 'openai_chat']:
        if use_openai_model and model_name is None:
            model_name = "gpt-3.5-turbo"
        if inference_server == 'openai':
            from langchain.llms import OpenAI
            cls = OpenAI
        else:
            cls = H2OChatOpenAI
        callbacks = [StreamingGradioCallbackHandler()]
        llm = cls(model_name=model_name,
                  temperature=temperature if do_sample else 0,
                  # FIXME: Need to count tokens and reduce max_new_tokens to fit like in generate.py
                  max_tokens=max_new_tokens,
                  top_p=top_p if do_sample else 1,
                  frequency_penalty=0,
                  presence_penalty=1.07 - repetition_penalty + 0.6,  # so good default
                  callbacks=callbacks if stream_output else None,
                  )
        streamer = callbacks[0] if stream_output else None
        if inference_server in ['openai', 'openai_chat']:
            prompt_type = inference_server
        else:
            prompt_type = prompt_type or 'plain'
    elif inference_server:
        assert inference_server.startswith(
            'http'), "Malformed inference_server=%s.  Did you add http:// in front?" % inference_server

        from gradio_utils.grclient import GradioClient
        from text_generation import Client as HFClient
        if isinstance(model, GradioClient):
            gr_client = model
            hf_client = None
        else:
            gr_client = None
            hf_client = model
            assert isinstance(hf_client, HFClient)

        inference_server, headers = get_hf_server(inference_server)

        # quick sanity check to avoid long timeouts, just see if can reach server
        requests.get(inference_server, timeout=int(os.getenv('REQUEST_TIMEOUT_FAST', '10')))

        callbacks = [StreamingGradioCallbackHandler()]
        assert prompter is not None
        stop_sequences = list(set(prompter.terminate_response + [prompter.PreResponse]))

        if gr_client:
            chat_client = False
            llm = GradioInference(
                inference_server_url=inference_server,
                return_full_text=True,

                temperature=temperature,
                top_p=top_p,
                top_k=top_k,
                num_beams=num_beams,
                max_new_tokens=max_new_tokens,
                min_new_tokens=min_new_tokens,
                early_stopping=early_stopping,
                max_time=max_time,
                repetition_penalty=repetition_penalty,
                num_return_sequences=num_return_sequences,
                do_sample=do_sample,
                chat_client=chat_client,

                callbacks=callbacks if stream_output else None,
                stream=stream_output,
                prompter=prompter,
                client=gr_client,
                sanitize_bot_response=sanitize_bot_response,
            )
        elif hf_client:
            llm = H2OHuggingFaceTextGenInference(
                inference_server_url=inference_server,
                do_sample=do_sample,
                max_new_tokens=max_new_tokens,
                repetition_penalty=repetition_penalty,
                return_full_text=True,
                seed=SEED,

                stop_sequences=stop_sequences,
                temperature=temperature,
                top_k=top_k,
                top_p=top_p,
                # typical_p=top_p,
                callbacks=callbacks if stream_output else None,
                stream=stream_output,
                prompter=prompter,
                tokenizer=tokenizer,
                client=hf_client,
                timeout=max_time,
                sanitize_bot_response=sanitize_bot_response,
            )
        else:
            raise RuntimeError("No defined client")
        streamer = callbacks[0] if stream_output else None
    elif model_name in non_hf_types:
        if model_name == 'llama':
            callbacks = [StreamingGradioCallbackHandler()]
            streamer = callbacks[0] if stream_output else None
        else:
            # stream_output = False
            # doesn't stream properly as generator, but at least
            callbacks = [streaming_stdout.StreamingStdOutCallbackHandler()]
            streamer = None
        if prompter:
            prompt_type = prompter.prompt_type
        else:
            prompter = Prompter(prompt_type, prompt_dict, debug=False, chat=False, stream_output=stream_output)
            pass  # assume inputted prompt_type is correct
        from gpt4all_llm import get_llm_gpt4all
        llm = get_llm_gpt4all(model_name, model=model, max_new_tokens=max_new_tokens,
                              temperature=temperature,
                              repetition_penalty=repetition_penalty,
                              top_k=top_k,
                              top_p=top_p,
                              callbacks=callbacks,
                              verbose=verbose,
                              streaming=stream_output,
                              prompter=prompter,
                              )
    else:
        if model is None:
            # only used if didn't pass model in
            assert tokenizer is None
            prompt_type = 'human_bot'
            if model_name is None:
                model_name = 'h2oai/h2ogpt-oasst1-512-12b'
                # model_name = 'h2oai/h2ogpt-oig-oasst1-512-6_9b'
                # model_name = 'h2oai/h2ogpt-oasst1-512-20b'
            inference_server = ''
            model, tokenizer, device = get_model(load_8bit=True, base_model=model_name,
                                                 inference_server=inference_server, gpu_id=0)

        max_max_tokens = tokenizer.model_max_length
        gen_kwargs = dict(do_sample=do_sample,
                          temperature=temperature,
                          top_k=top_k,
                          top_p=top_p,
                          num_beams=num_beams,
                          max_new_tokens=max_new_tokens,
                          min_new_tokens=min_new_tokens,
                          early_stopping=early_stopping,
                          max_time=max_time,
                          repetition_penalty=repetition_penalty,
                          num_return_sequences=num_return_sequences,
                          return_full_text=True,
                          handle_long_generation=None)
        assert len(set(gen_hyper).difference(gen_kwargs.keys())) == 0

        if stream_output:
            skip_prompt = False
            from generate import H2OTextIteratorStreamer
            decoder_kwargs = {}
            streamer = H2OTextIteratorStreamer(tokenizer, skip_prompt=skip_prompt, block=False, **decoder_kwargs)
            gen_kwargs.update(dict(streamer=streamer))
        else:
            streamer = None

        from h2oai_pipeline import H2OTextGenerationPipeline
        pipe = H2OTextGenerationPipeline(model=model, use_prompter=True,
                                         prompter=prompter,
                                         prompt_type=prompt_type,
                                         prompt_dict=prompt_dict,
                                         sanitize_bot_response=sanitize_bot_response,
                                         chat=False, stream_output=stream_output,
                                         tokenizer=tokenizer,
                                         # leave some room for 1 paragraph, even if min_new_tokens=0
                                         max_input_tokens=max_max_tokens - max(min_new_tokens, 256),
                                         **gen_kwargs)
        # pipe.task = "text-generation"
        # below makes it listen only to our prompt removal,
        # not built in prompt removal that is less general and not specific for our model
        pipe.task = "text2text-generation"

        from langchain.llms import HuggingFacePipeline
        llm = HuggingFacePipeline(pipeline=pipe)
    return llm, model_name, streamer, prompt_type


def get_device_dtype():
    # torch.device("cuda") leads to cuda:x cuda:y mismatches for multi-GPU consistently
    import torch
    n_gpus = torch.cuda.device_count() if torch.cuda.is_available else 0
    device = 'cpu' if n_gpus == 0 else 'cuda'
    # from utils import NullContext
    # context_class = NullContext if n_gpus > 1 or n_gpus == 0 else context_class
    context_class = torch.device
    torch_dtype = torch.float16 if device == 'cuda' else torch.float32
    return device, torch_dtype, context_class


def get_wiki_data(title, first_paragraph_only, text_limit=None, take_head=True):
    """
    Get wikipedia data from online
    :param title:
    :param first_paragraph_only:
    :param text_limit:
    :param take_head:
    :return:
    """
    filename = 'wiki_%s_%s_%s_%s.data' % (first_paragraph_only, title, text_limit, take_head)
    url = f"https://en.wikipedia.org/w/api.php?format=json&action=query&prop=extracts&explaintext=1&titles={title}"
    if first_paragraph_only:
        url += "&exintro=1"
    import json
    if not os.path.isfile(filename):
        data = requests.get(url).json()
        json.dump(data, open(filename, 'wt'))
    else:
        data = json.load(open(filename, "rt"))
    page_content = list(data["query"]["pages"].values())[0]["extract"]
    if take_head is not None and text_limit is not None:
        page_content = page_content[:text_limit] if take_head else page_content[-text_limit:]
    title_url = str(title).replace(' ', '_')
    return Document(
        page_content=page_content,
        metadata={"source": f"https://en.wikipedia.org/wiki/{title_url}"},
    )


def get_wiki_sources(first_para=True, text_limit=None):
    """
    Get specific named sources from wikipedia
    :param first_para:
    :param text_limit:
    :return:
    """
    default_wiki_sources = ['Unix', 'Microsoft_Windows', 'Linux']
    wiki_sources = list(os.getenv('WIKI_SOURCES', default_wiki_sources))
    return [get_wiki_data(x, first_para, text_limit=text_limit) for x in wiki_sources]


def get_github_docs(repo_owner, repo_name):
    """
    Access github from specific repo
    :param repo_owner:
    :param repo_name:
    :return:
    """
    with tempfile.TemporaryDirectory() as d:
        subprocess.check_call(
            f"git clone --depth 1 https://github.com/{repo_owner}/{repo_name}.git .",
            cwd=d,
            shell=True,
        )
        git_sha = (
            subprocess.check_output("git rev-parse HEAD", shell=True, cwd=d)
            .decode("utf-8")
            .strip()
        )
        repo_path = pathlib.Path(d)
        markdown_files = list(repo_path.glob("*/*.md")) + list(
            repo_path.glob("*/*.mdx")
        )
        for markdown_file in markdown_files:
            with open(markdown_file, "r") as f:
                relative_path = markdown_file.relative_to(repo_path)
                github_url = f"https://github.com/{repo_owner}/{repo_name}/blob/{git_sha}/{relative_path}"
                yield Document(page_content=f.read(), metadata={"source": github_url})


def get_dai_pickle(dest="."):
    from huggingface_hub import hf_hub_download
    # True for case when locally already logged in with correct token, so don't have to set key
    token = os.getenv('HUGGINGFACE_API_TOKEN', True)
    path_to_zip_file = hf_hub_download('h2oai/dai_docs', 'dai_docs.pickle', token=token, repo_type='dataset')
    shutil.copy(path_to_zip_file, dest)


def get_dai_docs(from_hf=False, get_pickle=True):
    """
    Consume DAI documentation, or consume from public pickle
    :param from_hf: get DAI docs from HF, then generate pickle for later use by LangChain
    :param get_pickle: Avoid raw DAI docs, just get pickle directly from HF
    :return:
    """
    import pickle

    if get_pickle:
        get_dai_pickle()

    dai_store = 'dai_docs.pickle'
    dst = "working_dir_docs"
    if not os.path.isfile(dai_store):
        from create_data import setup_dai_docs
        dst = setup_dai_docs(dst=dst, from_hf=from_hf)

        import glob
        files = list(glob.glob(os.path.join(dst, '*rst'), recursive=True))

        basedir = os.path.abspath(os.getcwd())
        from create_data import rst_to_outputs
        new_outputs = rst_to_outputs(files)
        os.chdir(basedir)

        pickle.dump(new_outputs, open(dai_store, 'wb'))
    else:
        new_outputs = pickle.load(open(dai_store, 'rb'))

    sources = []
    for line, file in new_outputs:
        # gradio requires any linked file to be with app.py
        sym_src = os.path.abspath(os.path.join(dst, file))
        sym_dst = os.path.abspath(os.path.join(os.getcwd(), file))
        if os.path.lexists(sym_dst):
            os.remove(sym_dst)
        os.symlink(sym_src, sym_dst)
        itm = Document(page_content=line, metadata={"source": file})
        # NOTE: yield has issues when going into db, loses metadata
        # yield itm
        sources.append(itm)
    return sources


import distutils.spawn

have_tesseract = distutils.spawn.find_executable("tesseract")
have_libreoffice = distutils.spawn.find_executable("libreoffice")

import pkg_resources

try:
    assert pkg_resources.get_distribution('arxiv') is not None
    assert pkg_resources.get_distribution('pymupdf') is not None
    have_arxiv = True
except (pkg_resources.DistributionNotFound, AssertionError):
    have_arxiv = False

try:
    assert pkg_resources.get_distribution('pymupdf') is not None
    have_pymupdf = True
except (pkg_resources.DistributionNotFound, AssertionError):
    have_pymupdf = False

try:
    assert pkg_resources.get_distribution('selenium') is not None
    have_selenium = True
except (pkg_resources.DistributionNotFound, AssertionError):
    have_selenium = False

try:
    assert pkg_resources.get_distribution('playwright') is not None
    have_playwright = True
except (pkg_resources.DistributionNotFound, AssertionError):
    have_playwright = False

# disable, hangs too often
have_playwright = False

image_types = ["png", "jpg", "jpeg"]
non_image_types = ["pdf", "txt", "csv", "toml", "py", "rst", "rtf",
                   "md", "html",
                   "enex", "eml", "epub", "odt", "pptx", "ppt",
                   "zip", "urls",
                   ]
# "msg",  GPL3

if have_libreoffice:
    non_image_types.extend(["docx", "doc"])

file_types = non_image_types + image_types


def add_meta(docs1, file):
    file_extension = pathlib.Path(file).suffix
    hashid = hash_file(file)
    if not isinstance(docs1, (list, tuple, types.GeneratorType)):
        docs1 = [docs1]
    [x.metadata.update(dict(input_type=file_extension, date=str(datetime.now), hashid=hashid)) for x in docs1]


def file_to_doc(file, base_path=None, verbose=False, fail_any_exception=False,
                chunk=True, chunk_size=512,
                is_url=False, is_txt=False,
                enable_captions=True,
                captions_model=None,
                enable_ocr=False, caption_loader=None,
                headsize=50):
    if file is None:
        if fail_any_exception:
            raise RuntimeError("Unexpected None file")
        else:
            return []
    doc1 = []  # in case no support, or disabled support
    if base_path is None and not is_txt and not is_url:
        # then assume want to persist but don't care which path used
        # can't be in base_path
        dir_name = os.path.dirname(file)
        base_name = os.path.basename(file)
        # if from gradio, will have its own temp uuid too, but that's ok
        base_name = sanitize_filename(base_name) + "_" + str(uuid.uuid4())[:10]
        base_path = os.path.join(dir_name, base_name)
    if is_url:
        if file.lower().startswith('arxiv:'):
            query = file.lower().split('arxiv:')
            if len(query) == 2 and have_arxiv:
                query = query[1]
                docs1 = ArxivLoader(query=query, load_max_docs=20, load_all_available_meta=True).load()
                # ensure string, sometimes None
                [[x.metadata.update({k: str(v)}) for k, v in x.metadata.items()] for x in docs1]
                query_url = f"https://arxiv.org/abs/{query}"
                [x.metadata.update(
                    dict(source=x.metadata.get('entry_id', query_url), query=query_url,
                         input_type='arxiv', head=x.metadata.get('Title', ''), date=str(datetime.now))) for x in
                    docs1]
            else:
                docs1 = []
        else:
            if not (file.startswith("http://") or file.startswith("file://") or file.startswith("https://")):
                file = 'http://' + file
            docs1 = UnstructuredURLLoader(urls=[file]).load()
            if len(docs1) == 0 and have_playwright:
                # then something went wrong, try another loader:
                from langchain.document_loaders import PlaywrightURLLoader
                docs1 = PlaywrightURLLoader(urls=[file]).load()
            if len(docs1) == 0 and have_selenium:
                # then something went wrong, try another loader:
                # but requires Chrome binary, else get: selenium.common.exceptions.WebDriverException: Message: unknown error: cannot find Chrome binary
                from langchain.document_loaders import SeleniumURLLoader
                from selenium.common.exceptions import WebDriverException
                try:
                    docs1 = SeleniumURLLoader(urls=[file]).load()
                except WebDriverException as e:
                    print("No web driver: %s" % str(e), flush=True)
            [x.metadata.update(dict(input_type='url', date=str(datetime.now))) for x in docs1]
        docs1 = clean_doc(docs1)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif is_txt:
        base_path = "user_paste"
        source_file = os.path.join(base_path, "_%s" % str(uuid.uuid4())[:10])
        makedirs(os.path.dirname(source_file), exist_ok=True)
        with open(source_file, "wt") as f:
            f.write(file)
        metadata = dict(source=source_file, date=str(datetime.now()), input_type='pasted txt')
        doc1 = Document(page_content=file, metadata=metadata)
        doc1 = clean_doc(doc1)
    elif file.lower().endswith('.html') or file.lower().endswith('.mhtml'):
        docs1 = UnstructuredHTMLLoader(file_path=file).load()
        add_meta(docs1, file)
        docs1 = clean_doc(docs1)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.HTML)
    elif (file.lower().endswith('.docx') or file.lower().endswith('.doc')) and have_libreoffice:
        docs1 = UnstructuredWordDocumentLoader(file_path=file).load()
        add_meta(docs1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.odt'):
        docs1 = UnstructuredODTLoader(file_path=file).load()
        add_meta(docs1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('pptx') or file.lower().endswith('ppt'):
        docs1 = UnstructuredPowerPointLoader(file_path=file).load()
        add_meta(docs1, file)
        docs1 = clean_doc(docs1)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.txt'):
        # use UnstructuredFileLoader ?
        docs1 = TextLoader(file, encoding="utf8", autodetect_encoding=True).load()
        # makes just one, but big one
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
        doc1 = clean_doc(doc1)
        add_meta(doc1, file)
    elif file.lower().endswith('.rtf'):
        docs1 = UnstructuredRTFLoader(file).load()
        add_meta(docs1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.md'):
        docs1 = UnstructuredMarkdownLoader(file).load()
        add_meta(docs1, file)
        docs1 = clean_doc(docs1)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size, language=Language.MARKDOWN)
    elif file.lower().endswith('.enex'):
        docs1 = EverNoteLoader(file).load()
        add_meta(doc1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.epub'):
        docs1 = UnstructuredEPubLoader(file).load()
        add_meta(docs1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.jpeg') or file.lower().endswith('.jpg') or file.lower().endswith('.png'):
        docs1 = []
        if have_tesseract and enable_ocr:
            # OCR, somewhat works, but not great
            docs1.extend(UnstructuredImageLoader(file).load())
            add_meta(docs1, file)
        if enable_captions:
            # BLIP
            if caption_loader is not None and not isinstance(caption_loader, (str, bool)):
                # assumes didn't fork into this process with joblib, else can deadlock
                caption_loader.set_image_paths([file])
                docs1c = caption_loader.load()
                add_meta(docs1c, file)
                [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
                docs1.extend(docs1c)
            else:
                from image_captions import H2OImageCaptionLoader
                caption_loader = H2OImageCaptionLoader(caption_gpu=caption_loader == 'gpu',
                                                       blip_model=captions_model,
                                                       blip_processor=captions_model)
                caption_loader.set_image_paths([file])
                docs1c = caption_loader.load()
                add_meta(docs1c, file)
                [x.metadata.update(dict(head=x.page_content[:headsize].strip())) for x in docs1c]
                docs1.extend(docs1c)
            for doci in docs1:
                doci.metadata['source'] = doci.metadata['image_path']
                doci.metadata['hash'] = hash_file(doci.metadata['source'])
            if docs1:
                doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.msg'):
        raise RuntimeError("Not supported, GPL3 license")
        # docs1 = OutlookMessageLoader(file).load()
        # docs1[0].metadata['source'] = file
    elif file.lower().endswith('.eml'):
        try:
            docs1 = UnstructuredEmailLoader(file).load()
            add_meta(docs1, file)
            doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
        except ValueError as e:
            if 'text/html content not found in email' in str(e):
                # e.g. plain/text dict key exists, but not
                # doc1 = TextLoader(file, encoding="utf8").load()
                docs1 = UnstructuredEmailLoader(file, content_source="text/plain").load()
                add_meta(docs1, file)
                doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
            else:
                raise
    # elif file.lower().endswith('.gcsdir'):
    #    doc1 = GCSDirectoryLoader(project_name, bucket, prefix).load()
    # elif file.lower().endswith('.gcsfile'):
    # doc1 = GCSFileLoader(project_name, bucket, blob).load()
    elif file.lower().endswith('.rst'):
        with open(file, "r") as f:
            doc1 = Document(page_content=f.read(), metadata={"source": file})
        add_meta(doc1, file)
        doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.RST)
    elif file.lower().endswith('.pdf'):
        env_gpt4all_file = ".env_gpt4all"
        from dotenv import dotenv_values
        env_kwargs = dotenv_values(env_gpt4all_file)
        pdf_class_name = env_kwargs.get('PDF_CLASS_NAME', 'PyMuPDFParser')
        if have_pymupdf and pdf_class_name == 'PyMuPDFParser':
            # GPL, only use if installed
            from langchain.document_loaders import PyMuPDFLoader
            # load() still chunks by pages, but every page has title at start to help
            doc1 = PyMuPDFLoader(file).load()
            doc1 = clean_doc(doc1)
        elif pdf_class_name == 'UnstructuredPDFLoader':
            doc1 = UnstructuredPDFLoader(file).load()
            # seems to not need cleaning in most cases
        else:
            # open-source fallback
            # load() still chunks by pages, but every page has title at start to help
            doc1 = PyPDFLoader(file).load()
            doc1 = clean_doc(doc1)
        # Some PDFs return nothing or junk from PDFMinerLoader
        doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
        add_meta(doc1, file)
    elif file.lower().endswith('.csv'):
        doc1 = CSVLoader(file).load()
        add_meta(doc1, file)
    elif file.lower().endswith('.py'):
        doc1 = PythonLoader(file).load()
        add_meta(doc1, file)
        doc1 = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size, language=Language.PYTHON)
    elif file.lower().endswith('.toml'):
        doc1 = TomlLoader(file).load()
        add_meta(doc1, file)
    elif file.lower().endswith('.urls'):
        with open(file, "r") as f:
            docs1 = UnstructuredURLLoader(urls=f.readlines()).load()
        add_meta(docs1, file)
        doc1 = chunk_sources(docs1, chunk=chunk, chunk_size=chunk_size)
    elif file.lower().endswith('.zip'):
        with zipfile.ZipFile(file, 'r') as zip_ref:
            # don't put into temporary path, since want to keep references to docs inside zip
            # so just extract in path where
            zip_ref.extractall(base_path)
            # recurse
            doc1 = path_to_docs(base_path, verbose=verbose, fail_any_exception=fail_any_exception)
    else:
        raise RuntimeError("No file handler for %s" % os.path.basename(file))

    # allow doc1 to be list or not.  If not list, did not chunk yet, so chunk now
    # if list of length one, don't trust and chunk it
    if not isinstance(doc1, list):
        if chunk:
            docs = chunk_sources([doc1], chunk=chunk, chunk_size=chunk_size)
        else:
            docs = [doc1]
    elif isinstance(doc1, list) and len(doc1) == 1:
        if chunk:
            docs = chunk_sources(doc1, chunk=chunk, chunk_size=chunk_size)
        else:
            docs = doc1
    else:
        docs = doc1

    assert isinstance(docs, list)
    return docs


def path_to_doc1(file, verbose=False, fail_any_exception=False, return_file=True,
                 chunk=True, chunk_size=512,
                 is_url=False, is_txt=False,
                 enable_captions=True,
                 captions_model=None,
                 enable_ocr=False, caption_loader=None):
    if verbose:
        if is_url:
            print("Ingesting URL: %s" % file, flush=True)
        elif is_txt:
            print("Ingesting Text: %s" % file, flush=True)
        else:
            print("Ingesting file: %s" % file, flush=True)
    res = None
    try:
        # don't pass base_path=path, would infinitely recurse
        res = file_to_doc(file, base_path=None, verbose=verbose, fail_any_exception=fail_any_exception,
                          chunk=chunk, chunk_size=chunk_size,
                          is_url=is_url, is_txt=is_txt,
                          enable_captions=enable_captions,
                          captions_model=captions_model,
                          enable_ocr=enable_ocr,
                          caption_loader=caption_loader)
    except BaseException as e:
        print("Failed to ingest %s due to %s" % (file, traceback.format_exc()))
        if fail_any_exception:
            raise
        else:
            exception_doc = Document(
                page_content='',
                metadata={"source": file, "exception": str(e), "traceback": traceback.format_exc()})
            res = [exception_doc]
    if return_file:
        base_tmp = "temp_path_to_doc1"
        if not os.path.isdir(base_tmp):
            os.makedirs(base_tmp, exist_ok=True)
        filename = os.path.join(base_tmp, str(uuid.uuid4()) + ".tmp.pickle")
        with open(filename, 'wb') as f:
            pickle.dump(res, f)
        return filename
    return res


def path_to_docs(path_or_paths, verbose=False, fail_any_exception=False, n_jobs=-1,
                 chunk=True, chunk_size=512,
                 url=None, text=None,
                 enable_captions=True,
                 captions_model=None,
                 caption_loader=None,
                 enable_ocr=False,
                 existing_files=[],
                 existing_hash_ids={},
                 ):
    # path_or_paths could be str, list, tuple, generator
    globs_image_types = []
    globs_non_image_types = []
    if not path_or_paths and not url and not text:
        return []
    elif url:
        globs_non_image_types = url if isinstance(url, (list, tuple, types.GeneratorType)) else [url]
    elif text:
        globs_non_image_types = text if isinstance(text, (list, tuple, types.GeneratorType)) else [text]
    elif isinstance(path_or_paths, str) and os.path.isdir(path_or_paths):
        # single path, only consume allowed files
        path = path_or_paths
        # Below globs should match patterns in file_to_doc()
        [globs_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
         for ftype in image_types]
        [globs_non_image_types.extend(glob.glob(os.path.join(path, "./**/*.%s" % ftype), recursive=True))
         for ftype in non_image_types]
    else:
        if isinstance(path_or_paths, str) and (os.path.isfile(path_or_paths) or os.path.isdir(path_or_paths)):
            path_or_paths = [path_or_paths]
        # list/tuple of files (consume what can, and exception those that selected but cannot consume so user knows)
        assert isinstance(path_or_paths, (list, tuple, types.GeneratorType)), "Wrong type for path_or_paths: %s" % type(
            path_or_paths)
        # reform out of allowed types
        globs_image_types.extend(flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in image_types]))
        # could do below:
        # globs_non_image_types = flatten_list([[x for x in path_or_paths if x.endswith(y)] for y in non_image_types])
        # But instead, allow fail so can collect unsupported too
        set_globs_image_types = set(globs_image_types)
        globs_non_image_types.extend([x for x in path_or_paths if x not in set_globs_image_types])

    # filter out any files to skip (e.g. if already processed them)
    # this is easy, but too aggressive in case a file changed, so parent probably passed existing_files=[]
    assert not existing_files, "DEV: assume not using this approach"
    if existing_files:
        set_skip_files = set(existing_files)
        globs_image_types = [x for x in globs_image_types if x not in set_skip_files]
        globs_non_image_types = [x for x in globs_non_image_types if x not in set_skip_files]
    if existing_hash_ids:
        # assume consistent with add_meta() use of hash_file(file)
        # also assume consistent with get_existing_hash_ids for dict creation
        # assume hashable values
        existing_hash_ids_set = set(existing_hash_ids.items())
        hash_ids_all_image = set({x: hash_file(x) for x in globs_image_types}.items())
        hash_ids_all_non_image = set({x: hash_file(x) for x in globs_non_image_types}.items())
        # don't use symmetric diff.  If file is gone, ignore and don't remove or something
        #  just consider existing files (key) having new hash or not (value)
        new_files_image = set(dict(hash_ids_all_image - existing_hash_ids_set).keys())
        new_files_non_image = set(dict(hash_ids_all_non_image - existing_hash_ids_set).keys())
        globs_image_types = [x for x in globs_image_types if x in new_files_image]
        globs_non_image_types = [x for x in globs_non_image_types if x in new_files_non_image]

    # could use generator, but messes up metadata handling in recursive case
    if caption_loader and not isinstance(caption_loader, (bool, str)) and \
            caption_loader.device != 'cpu' or \
            get_device() == 'cuda':
        # to avoid deadlocks, presume was preloaded and so can't fork due to cuda context
        n_jobs_image = 1
    else:
        n_jobs_image = n_jobs

    return_file = True  # local choice
    is_url = url is not None
    is_txt = text is not None
    kwargs = dict(verbose=verbose, fail_any_exception=fail_any_exception,
                  return_file=return_file,
                  chunk=chunk, chunk_size=chunk_size,
                  is_url=is_url,
                  is_txt=is_txt,
                  enable_captions=enable_captions,
                  captions_model=captions_model,
                  caption_loader=caption_loader,
                  enable_ocr=enable_ocr,
                  )

    if n_jobs != 1 and len(globs_non_image_types) > 1:
        # avoid nesting, e.g. upload 1 zip and then inside many files
        # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
        documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
            delayed(path_to_doc1)(file, **kwargs) for file in globs_non_image_types
        )
    else:
        documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_non_image_types)]

    # do images separately since can't fork after cuda in parent, so can't be parallel
    if n_jobs_image != 1 and len(globs_image_types) > 1:
        # avoid nesting, e.g. upload 1 zip and then inside many files
        # harder to handle if upload many zips with many files, inner parallel one will be disabled by joblib
        image_documents = ProgressParallel(n_jobs=n_jobs, verbose=10 if verbose else 0, backend='multiprocessing')(
            delayed(path_to_doc1)(file, **kwargs) for file in globs_image_types
        )
    else:
        image_documents = [path_to_doc1(file, **kwargs) for file in tqdm(globs_image_types)]

    # add image docs in
    documents += image_documents

    if return_file:
        # then documents really are files
        files = documents.copy()
        documents = []
        for fil in files:
            with open(fil, 'rb') as f:
                documents.extend(pickle.load(f))
            # remove temp pickle
            os.remove(fil)
    else:
        documents = reduce(concat, documents)
    return documents


def prep_langchain(persist_directory,
                   load_db_if_exists,
                   db_type, use_openai_embedding, langchain_mode, user_path,
                   hf_embedding_model, n_jobs=-1, kwargs_make_db={}):
    """
    do prep first time, involving downloads
    # FIXME: Add github caching then add here
    :return:
    """
    assert langchain_mode not in ['MyData'], "Should not prep scratch data"

    db_dir_exists = os.path.isdir(persist_directory)

    if db_dir_exists and user_path is None:
        print("Prep: persist_directory=%s exists, using" % persist_directory, flush=True)
        db = get_existing_db(None, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
                             hf_embedding_model)
    else:
        if db_dir_exists and user_path is not None:
            print("Prep: persist_directory=%s exists, user_path=%s passed, adding any changed or new documents" % (
                persist_directory, user_path), flush=True)
        elif not db_dir_exists:
            print("Prep: persist_directory=%s does not exist, regenerating" % persist_directory, flush=True)
        db = None
        if langchain_mode in ['All', 'DriverlessAI docs']:
            # FIXME: Could also just use dai_docs.pickle directly and upload that
            get_dai_docs(from_hf=True)

        if langchain_mode in ['All', 'wiki']:
            get_wiki_sources(first_para=kwargs_make_db['first_para'], text_limit=kwargs_make_db['text_limit'])

        langchain_kwargs = kwargs_make_db.copy()
        langchain_kwargs.update(locals())
        db, num_new_sources, new_sources_metadata = make_db(**langchain_kwargs)

    return db


import posthog

posthog.disabled = True


class FakeConsumer(object):
    def __init__(self, *args, **kwargs):
        pass

    def run(self):
        pass

    def pause(self):
        pass

    def upload(self):
        pass

    def next(self):
        pass

    def request(self, batch):
        pass


posthog.Consumer = FakeConsumer


def check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model, langchain_mode):
    changed_db = False
    if load_embed(db) != (use_openai_embedding, hf_embedding_model):
        print("Detected new embedding, updating db: %s" % langchain_mode, flush=True)
        # handle embedding changes
        db_get = get_documents(db)
        sources = [Document(page_content=result[0], metadata=result[1] or {})
                   for result in zip(db_get['documents'], db_get['metadatas'])]
        # delete index, has to be redone
        persist_directory = db._persist_directory
        shutil.move(persist_directory, persist_directory + "_" + str(uuid.uuid4()) + ".bak")
        db_type = 'chroma'
        load_db_if_exists = False
        db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
                    persist_directory=persist_directory, load_db_if_exists=load_db_if_exists,
                    langchain_mode=langchain_mode,
                    collection_name=None,
                    hf_embedding_model=hf_embedding_model)
        if False:
            # below doesn't work if db already in memory, so have to switch to new db as above
            # upsert does new embedding, but if index already in memory, complains about size mismatch etc.
            client_collection = db._client.get_collection(name=db._collection.name,
                                                          embedding_function=db._collection._embedding_function)
            client_collection.upsert(ids=db_get['ids'], metadatas=db_get['metadatas'], documents=db_get['documents'])
        changed_db = True
        print("Done updating db for new embedding: %s" % langchain_mode, flush=True)

    return db, changed_db


def get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
                    hf_embedding_model, verbose=False, check_embedding=True):
    if load_db_if_exists and db_type == 'chroma' and os.path.isdir(persist_directory) and os.path.isdir(
            os.path.join(persist_directory, 'index')):
        if db is None:
            if verbose:
                print("DO Loading db: %s" % langchain_mode, flush=True)
            embedding = get_embedding(use_openai_embedding, hf_embedding_model=hf_embedding_model)
            from chromadb.config import Settings
            client_settings = Settings(anonymized_telemetry=False,
                                       chroma_db_impl="duckdb+parquet",
                                       persist_directory=persist_directory)
            db = Chroma(persist_directory=persist_directory, embedding_function=embedding,
                        collection_name=langchain_mode.replace(' ', '_'),
                        client_settings=client_settings)
            if verbose:
                print("DONE Loading db: %s" % langchain_mode, flush=True)
        else:
            if verbose:
                print("USING already-loaded db: %s" % langchain_mode, flush=True)
        if check_embedding:
            db_trial, changed_db = check_update_chroma_embedding(db, use_openai_embedding, hf_embedding_model,
                                                                 langchain_mode)
            if changed_db:
                db = db_trial
                # only call persist if really changed db, else takes too long for large db
                if db is not None:
                    db.persist()
                    clear_embedding(db)
        save_embed(db, use_openai_embedding, hf_embedding_model)
        return db
    return None


def clear_embedding(db):
    if db is None:
        return
    # don't keep on GPU, wastes memory, push back onto CPU and only put back on GPU once again embed
    db._embedding_function.client.cpu()
    clear_torch_cache()


def make_db(**langchain_kwargs):
    func_names = list(inspect.signature(_make_db).parameters)
    missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
    defaults_db = {k: v.default for k, v in dict(inspect.signature(run_qa_db).parameters).items()}
    for k in missing_kwargs:
        if k in defaults_db:
            langchain_kwargs[k] = defaults_db[k]
    # final check for missing
    missing_kwargs = [x for x in func_names if x not in langchain_kwargs]
    assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs
    # only keep actual used
    langchain_kwargs = {k: v for k, v in langchain_kwargs.items() if k in func_names}
    return _make_db(**langchain_kwargs)


def save_embed(db, use_openai_embedding, hf_embedding_model):
    if db is not None:
        embed_info_file = os.path.join(db._persist_directory, 'embed_info')
        with open(embed_info_file, 'wb') as f:
            pickle.dump((use_openai_embedding, hf_embedding_model), f)
    return use_openai_embedding, hf_embedding_model


def load_embed(db):
    embed_info_file = os.path.join(db._persist_directory, 'embed_info')
    if os.path.isfile(embed_info_file):
        with open(embed_info_file, 'rb') as f:
            use_openai_embedding, hf_embedding_model = pickle.load(f)
    else:
        # migration, assume defaults
        use_openai_embedding, hf_embedding_model = False, "sentence-transformers/all-MiniLM-L6-v2"
    return use_openai_embedding, hf_embedding_model


def get_persist_directory(langchain_mode):
    return 'db_dir_%s' % langchain_mode  # single place, no special names for each case


def _make_db(use_openai_embedding=False,
             hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
             first_para=False, text_limit=None,
             chunk=True, chunk_size=512,
             langchain_mode=None,
             user_path=None,
             db_type='faiss',
             load_db_if_exists=True,
             db=None,
             n_jobs=-1,
             verbose=False):
    persist_directory = get_persist_directory(langchain_mode)
    # see if can get persistent chroma db
    db_trial = get_existing_db(db, persist_directory, load_db_if_exists, db_type, use_openai_embedding, langchain_mode,
                               hf_embedding_model, verbose=verbose)
    if db_trial is not None:
        db = db_trial

    sources = []
    if not db and langchain_mode not in ['MyData'] or \
            user_path is not None and \
            langchain_mode in ['UserData']:
        # Should not make MyData db this way, why avoided, only upload from UI
        assert langchain_mode not in ['MyData'], "Should not make MyData db this way"
        if verbose:
            if langchain_mode in ['UserData']:
                if user_path is not None:
                    print("Checking if changed or new sources in %s, and generating sources them" % user_path,
                          flush=True)
                elif db is None:
                    print("user_path not passed and no db, no sources", flush=True)
                else:
                    print("user_path not passed, using only existing db, no new sources", flush=True)
            else:
                print("Generating %s sources" % langchain_mode, flush=True)
        if langchain_mode in ['wiki_full', 'All', "'All'"]:
            from read_wiki_full import get_all_documents
            small_test = None
            print("Generating new wiki", flush=True)
            sources1 = get_all_documents(small_test=small_test, n_jobs=os.cpu_count() // 2)
            print("Got new wiki", flush=True)
            if chunk:
                sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
                print("Chunked new wiki", flush=True)
            sources.extend(sources1)
        if langchain_mode in ['wiki', 'All', "'All'"]:
            sources1 = get_wiki_sources(first_para=first_para, text_limit=text_limit)
            if chunk:
                sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
            sources.extend(sources1)
        if langchain_mode in ['github h2oGPT', 'All', "'All'"]:
            # sources = get_github_docs("dagster-io", "dagster")
            sources1 = get_github_docs("h2oai", "h2ogpt")
            # FIXME: always chunk for now
            sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
            sources.extend(sources1)
        if langchain_mode in ['DriverlessAI docs', 'All', "'All'"]:
            sources1 = get_dai_docs(from_hf=True)
            if chunk and False:  # FIXME: DAI docs are already chunked well, should only chunk more if over limit
                sources1 = chunk_sources(sources1, chunk=chunk, chunk_size=chunk_size)
            sources.extend(sources1)
        if langchain_mode in ['All', 'UserData']:
            if user_path:
                if db is not None:
                    # NOTE: Ignore file names for now, only go by hash ids
                    # existing_files = get_existing_files(db)
                    existing_files = []
                    existing_hash_ids = get_existing_hash_ids(db)
                else:
                    # pretend no existing files so won't filter
                    existing_files = []
                    existing_hash_ids = []
                # chunk internally for speed over multiple docs
                # FIXME: If first had old Hash=None and switch embeddings,
                #  then re-embed, and then hit here and reload so have hash, and then re-embed.
                sources1 = path_to_docs(user_path, n_jobs=n_jobs, chunk=chunk, chunk_size=chunk_size,
                                        existing_files=existing_files, existing_hash_ids=existing_hash_ids)
                new_metadata_sources = set([x.metadata['source'] for x in sources1])
                if new_metadata_sources:
                    print("Loaded %s new files as sources to add to UserData" % len(new_metadata_sources), flush=True)
                    if verbose:
                        print("Files added: %s" % '\n'.join(new_metadata_sources), flush=True)
                sources.extend(sources1)
                print("Loaded %s sources for potentially adding to UserData" % len(sources), flush=True)
            else:
                print("Chose UserData but user_path is empty/None", flush=True)
        if False and langchain_mode in ['urls', 'All', "'All'"]:
            # from langchain.document_loaders import UnstructuredURLLoader
            # loader = UnstructuredURLLoader(urls=urls)
            urls = ["https://www.birdsongsf.com/who-we-are/"]
            from langchain.document_loaders import PlaywrightURLLoader
            loader = PlaywrightURLLoader(urls=urls, remove_selectors=["header", "footer"])
            sources1 = loader.load()
            sources.extend(sources1)
        if not sources:
            if verbose:
                if db is not None:
                    print("langchain_mode %s has no new sources, nothing to add to db" % langchain_mode, flush=True)
                else:
                    print("langchain_mode %s has no sources, not making new db" % langchain_mode, flush=True)
            return db, 0, []
        if verbose:
            if db is not None:
                print("Generating db", flush=True)
            else:
                print("Adding to db", flush=True)
    if not db:
        if sources:
            db = get_db(sources, use_openai_embedding=use_openai_embedding, db_type=db_type,
                        persist_directory=persist_directory, langchain_mode=langchain_mode,
                        hf_embedding_model=hf_embedding_model)
            if verbose:
                print("Generated db", flush=True)
        else:
            print("Did not generate db since no sources", flush=True)
        new_sources_metadata = [x.metadata for x in sources]
    elif user_path is not None and langchain_mode in ['UserData']:
        print("Existing db, potentially adding %s sources from user_path=%s" % (len(sources), user_path), flush=True)
        db, num_new_sources, new_sources_metadata = add_to_db(db, sources, db_type=db_type,
                                                              use_openai_embedding=use_openai_embedding,
                                                              hf_embedding_model=hf_embedding_model)
        print("Existing db, added %s new sources from user_path=%s" % (num_new_sources, user_path), flush=True)
    else:
        new_sources_metadata = [x.metadata for x in sources]

    return db, len(new_sources_metadata), new_sources_metadata


def get_metadatas(db):
    from langchain.vectorstores import FAISS
    if isinstance(db, FAISS):
        metadatas = [v.metadata for k, v in db.docstore._dict.items()]
    elif isinstance(db, Chroma):
        metadatas = get_documents(db)['metadatas']
    else:
        # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
        # seems no way to get all metadata, so need to avoid this approach for weaviate
        metadatas = [x.metadata for x in db.similarity_search("", k=10000)]
    return metadatas


def get_documents(db):
    if hasattr(db, '_persist_directory'):
        name_path = os.path.basename(db._persist_directory)
        base_path = 'locks'
        makedirs(base_path)
        with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
            # get segfaults and other errors when multiple threads access this
            return _get_documents(db)
    else:
        return _get_documents(db)


def _get_documents(db):
    from langchain.vectorstores import FAISS
    if isinstance(db, FAISS):
        documents = [v for k, v in db.docstore._dict.items()]
    elif isinstance(db, Chroma):
        documents = db.get()
    else:
        # FIXME: Hack due to https://github.com/weaviate/weaviate/issues/1947
        # seems no way to get all metadata, so need to avoid this approach for weaviate
        documents = [x for x in db.similarity_search("", k=10000)]
    return documents


def get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
    if hasattr(db, '_persist_directory'):
        name_path = os.path.basename(db._persist_directory)
        base_path = 'locks'
        makedirs(base_path)
        with filelock.FileLock(os.path.join(base_path, "getdb_%s.lock" % name_path)):
            return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
    else:
        return _get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)


def _get_docs_and_meta(db, top_k_docs, filter_kwargs={}):
    from langchain.vectorstores import FAISS
    if isinstance(db, Chroma):
        db_get = db._collection.get(where=filter_kwargs.get('filter'))
        db_metadatas = db_get['metadatas']
        db_documents = db_get['documents']
    elif isinstance(db, FAISS):
        import itertools
        db_metadatas = get_metadatas(db)
        # FIXME: FAISS has no filter
        # slice dict first
        db_documents = list(dict(itertools.islice(db.docstore._dict.items(), top_k_docs)).values())
    else:
        db_metadatas = get_metadatas(db)
        db_documents = get_documents(db)
    return db_documents, db_metadatas


def get_existing_files(db):
    metadatas = get_metadatas(db)
    metadata_sources = set([x['source'] for x in metadatas])
    return metadata_sources


def get_existing_hash_ids(db):
    metadatas = get_metadatas(db)
    # assume consistency, that any prior hashed source was single hashed file at the time among all source chunks
    metadata_hash_ids = {x['source']: x.get('hashid') for x in metadatas}
    return metadata_hash_ids


def run_qa_db(**kwargs):
    func_names = list(inspect.signature(_run_qa_db).parameters)
    # hard-coded defaults
    kwargs['answer_with_sources'] = True
    kwargs['show_rank'] = False
    missing_kwargs = [x for x in func_names if x not in kwargs]
    assert not missing_kwargs, "Missing kwargs: %s" % missing_kwargs
    # only keep actual used
    kwargs = {k: v for k, v in kwargs.items() if k in func_names}
    try:
        return _run_qa_db(**kwargs)
    finally:
        clear_torch_cache()


def _run_qa_db(query=None,
               use_openai_model=False, use_openai_embedding=False,
               first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
               user_path=None,
               detect_user_path_changes_every_query=False,
               db_type='faiss',
               model_name=None, model=None, tokenizer=None, inference_server=None,
               hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
               stream_output=False,
               prompter=None,
               prompt_type=None,
               prompt_dict=None,
               answer_with_sources=True,
               cut_distanct=1.1,
               sanitize_bot_response=False,
               show_rank=False,
               load_db_if_exists=False,
               db=None,
               do_sample=False,
               temperature=0.1,
               top_k=40,
               top_p=0.7,
               num_beams=1,
               max_new_tokens=256,
               min_new_tokens=1,
               early_stopping=False,
               max_time=180,
               repetition_penalty=1.0,
               num_return_sequences=1,
               langchain_mode=None,
               document_choice=[DocumentChoices.All_Relevant.name],
               n_jobs=-1,
               verbose=False,
               cli=False,
               reverse_docs=True,
               lora_weights='',
               auto_reduce_chunks=True,
               max_chunks=100,
               ):
    """

    :param query:
    :param use_openai_model:
    :param use_openai_embedding:
    :param first_para:
    :param text_limit:
    :param k:
    :param chunk:
    :param chunk_size:
    :param user_path: user path to glob recursively from
    :param db_type: 'faiss' for in-memory db or 'chroma' or 'weaviate' for persistent db
    :param model_name: model name, used to switch behaviors
    :param model: pre-initialized model, else will make new one
    :param tokenizer: pre-initialized tokenizer, else will make new one.  Required not None if model is not None
    :param answer_with_sources
    :return:
    """
    if model is not None:
        assert model_name is not None  # require so can make decisions
    assert query is not None
    assert prompter is not None or prompt_type is not None or model is None  # if model is None, then will generate
    if prompter is not None:
        prompt_type = prompter.prompt_type
        prompt_dict = prompter.prompt_dict
    if model is not None:
        assert prompt_type is not None
        if prompt_type == PromptType.custom.name:
            assert prompt_dict is not None  # should at least be {} or ''
        else:
            prompt_dict = ''
    assert len(set(gen_hyper).difference(inspect.signature(get_llm).parameters)) == 0
    llm, model_name, streamer, prompt_type_out = get_llm(use_openai_model=use_openai_model, model_name=model_name,
                                                         model=model,
                                                         tokenizer=tokenizer,
                                                         inference_server=inference_server,
                                                         stream_output=stream_output,
                                                         do_sample=do_sample,
                                                         temperature=temperature,
                                                         top_k=top_k,
                                                         top_p=top_p,
                                                         num_beams=num_beams,
                                                         max_new_tokens=max_new_tokens,
                                                         min_new_tokens=min_new_tokens,
                                                         early_stopping=early_stopping,
                                                         max_time=max_time,
                                                         repetition_penalty=repetition_penalty,
                                                         num_return_sequences=num_return_sequences,
                                                         prompt_type=prompt_type,
                                                         prompt_dict=prompt_dict,
                                                         prompter=prompter,
                                                         sanitize_bot_response=sanitize_bot_response,
                                                         verbose=verbose,
                                                         )

    use_context = False
    scores = []
    chain = None

    if isinstance(document_choice, str):
        # support string as well
        document_choice = [document_choice]
    # get first DocumentChoices as command to use, ignore others
    doc_choices_set = set([x.name for x in list(DocumentChoices)])
    cmd = [x for x in document_choice if x in doc_choices_set]
    cmd = None if len(cmd) == 0 else cmd[0]
    # now have cmd, filter out for only docs
    document_choice = [x for x in document_choice if x not in doc_choices_set]

    func_names = list(inspect.signature(get_similarity_chain).parameters)
    sim_kwargs = {k: v for k, v in locals().items() if k in func_names}
    missing_kwargs = [x for x in func_names if x not in sim_kwargs]
    assert not missing_kwargs, "Missing: %s" % missing_kwargs
    docs, chain, scores, use_context = get_similarity_chain(**sim_kwargs)
    if cmd in [DocumentChoices.All_Relevant_Only_Sources.name, DocumentChoices.Only_All_Sources.name]:
        formatted_doc_chunks = '\n\n'.join([get_url(x) + '\n\n' + x.page_content for x in docs])
        yield formatted_doc_chunks, ''
        return
    if chain is None and model_name not in non_hf_types:
        # can only return if HF type
        return

    # context stuff similar to used in evaluate()
    import torch
    device, torch_dtype, context_class = get_device_dtype()
    with torch.no_grad():
        have_lora_weights = lora_weights not in [no_lora_str, '', None]
        context_class_cast = NullContext if device == 'cpu' or have_lora_weights else torch.autocast
        with context_class_cast(device):
            if stream_output and streamer:
                answer = None
                import queue
                bucket = queue.Queue()
                thread = EThread(target=chain, streamer=streamer, bucket=bucket)
                thread.start()
                outputs = ""
                prompt = None  # FIXME
                try:
                    for new_text in streamer:
                        # print("new_text: %s" % new_text, flush=True)
                        if bucket.qsize() > 0 or thread.exc:
                            thread.join()
                        outputs += new_text
                        if prompter:  # and False:  # FIXME: pipeline can already use prompter
                            output1 = prompter.get_response(outputs, prompt=prompt,
                                                            sanitize_bot_response=sanitize_bot_response)
                            yield output1, ''
                        else:
                            yield outputs, ''
                except BaseException:
                    # if any exception, raise that exception if was from thread, first
                    if thread.exc:
                        raise thread.exc
                    raise
                finally:
                    # in case no exception and didn't join with thread yet, then join
                    if not thread.exc:
                        answer = thread.join()
                # in case raise StopIteration or broke queue loop in streamer, but still have exception
                if thread.exc:
                    raise thread.exc
                # FIXME: answer is not string outputs from streamer.  How to get actual final output?
                # answer = outputs
            else:
                answer = chain()

    if not use_context:
        ret = answer['output_text']
        extra = ''
        yield ret, extra
    elif answer is not None:
        ret, extra = get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=verbose)
        yield ret, extra
    return


def get_similarity_chain(query=None,
                         use_openai_model=False, use_openai_embedding=False,
                         first_para=False, text_limit=None, top_k_docs=4, chunk=True, chunk_size=512,
                         user_path=None,
                         detect_user_path_changes_every_query=False,
                         db_type='faiss',
                         model_name=None,
                         inference_server='',
                         hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
                         prompt_type=None,
                         prompt_dict=None,
                         cut_distanct=1.1,
                         load_db_if_exists=False,
                         db=None,
                         langchain_mode=None,
                         document_choice=[DocumentChoices.All_Relevant.name],
                         n_jobs=-1,
                         # beyond run_db_query:
                         llm=None,
                         tokenizer=None,
                         verbose=False,
                         cmd=None,
                         reverse_docs=True,

                         # local
                         auto_reduce_chunks=True,
                         max_chunks=100,
                         ):
    # determine whether use of context out of docs is planned
    if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
        if langchain_mode in ['Disabled', 'ChatLLM', 'LLM']:
            use_context = False
        else:
            use_context = True
    else:
        use_context = True

    # https://github.com/hwchase17/langchain/issues/1946
    # FIXME: Seems to way to get size of chroma db to limit top_k_docs to avoid
    # Chroma collection MyData contains fewer than 4 elements.
    # type logger error
    if top_k_docs == -1:
        k_db = 1000 if db_type == 'chroma' else 100
    else:
        # top_k_docs=100 works ok too
        k_db = 1000 if db_type == 'chroma' else top_k_docs

    # FIXME: For All just go over all dbs instead of a separate db for All
    if not detect_user_path_changes_every_query and db is not None:
        # avoid looking at user_path during similarity search db handling,
        # if already have db and not updating from user_path every query
        # but if db is None, no db yet loaded (e.g. from prep), so allow user_path to be whatever it was
        user_path = None
    db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=use_openai_embedding,
                                                        hf_embedding_model=hf_embedding_model,
                                                        first_para=first_para, text_limit=text_limit,
                                                        chunk=chunk,
                                                        chunk_size=chunk_size,
                                                        langchain_mode=langchain_mode,
                                                        user_path=user_path,
                                                        db_type=db_type,
                                                        load_db_if_exists=load_db_if_exists,
                                                        db=db,
                                                        n_jobs=n_jobs,
                                                        verbose=verbose)

    if 'falcon' in model_name:
        extra = "According to only the information in the document sources provided within the context above, "
        prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends."
    elif inference_server in ['openai', 'openai_chat']:
        extra = "According to (primarily) the information in the document sources provided within context above, "
        prefix = "Pay attention and remember information below, which will help to answer the question or imperative after the context ends.  If the answer cannot be primarily obtained from information within the context, then respond that the answer does not appear in the context of the documents."
    else:
        extra = ""
        prefix = ""
    if langchain_mode in ['Disabled', 'ChatLLM', 'LLM'] or not use_context:
        template_if_no_docs = template = """%s{context}{question}""" % prefix
    else:
        template = """%s
\"\"\"
{context}
\"\"\"
%s{question}""" % (prefix, extra)
        template_if_no_docs = """%s{context}%s{question}""" % (prefix, extra)
    if not use_openai_model and prompt_type not in ['plain'] or model_name in non_hf_types:
        use_template = True
    else:
        use_template = False

    if db and use_context:
        if not isinstance(db, Chroma):
            # only chroma supports filtering
            filter_kwargs = {}
        else:
            # if here then some cmd + documents selected or just documents selected
            if len(document_choice) >= 2:
                or_filter = [{"source": {"$eq": x}} for x in document_choice]
                filter_kwargs = dict(filter={"$or": or_filter})
            elif len(document_choice) == 1:
                # degenerate UX bug in chroma
                one_filter = [{"source": {"$eq": x}} for x in document_choice][0]
                filter_kwargs = dict(filter=one_filter)
            else:
                # shouldn't reach
                filter_kwargs = {}
        if cmd == DocumentChoices.Just_LLM.name:
            docs = []
            scores = []
        elif cmd == DocumentChoices.Only_All_Sources.name:
            db_documents, db_metadatas = get_docs_and_meta(db, top_k_docs, filter_kwargs=filter_kwargs)
            # similar to langchain's chroma's _results_to_docs_and_scores
            docs_with_score = [(Document(page_content=result[0], metadata=result[1] or {}), 0)
                               for result in zip(db_documents, db_metadatas)][:top_k_docs]
            docs = [x[0] for x in docs_with_score]
            scores = [x[1] for x in docs_with_score]
        else:
            if top_k_docs == -1 or auto_reduce_chunks:
                # docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
                top_k_docs_tokenize = 100
                base_path = 'locks'
                makedirs(base_path)
                if hasattr(db, '_persist_directory'):
                    name_path = "sim_%s.lock" % os.path.basename(db._persist_directory)
                else:
                    name_path = "sim.lock"
                with filelock.FileLock(os.path.join(base_path, name_path)):
                    docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[
                                      :top_k_docs_tokenize]
                if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'tokenizer'):
                    # more accurate
                    tokens = [len(llm.pipeline.tokenizer(x[0].page_content)['input_ids']) for x in docs_with_score]
                    template_tokens = len(llm.pipeline.tokenizer(template)['input_ids'])
                elif inference_server in ['openai', 'openai_chat'] or use_openai_model or db_type in ['faiss',
                                                                                                      'weaviate']:
                    # use ticktoken for faiss since embedding called differently
                    tokens = [llm.get_num_tokens(x[0].page_content) for x in docs_with_score]
                    template_tokens = llm.get_num_tokens(template)
                elif isinstance(tokenizer, FakeTokenizer):
                    tokens = [tokenizer.num_tokens_from_string(x[0].page_content) for x in docs_with_score]
                    template_tokens = tokenizer.num_tokens_from_string(template)
                else:
                    # in case model is not our pipeline with HF tokenizer
                    tokens = [db._embedding_function.client.tokenize([x[0].page_content])['input_ids'].shape[1] for x in
                              docs_with_score]
                    template_tokens = db._embedding_function.client.tokenize([template])['input_ids'].shape[1]
                tokens_cumsum = np.cumsum(tokens)
                if hasattr(llm, 'pipeline') and hasattr(llm.pipeline, 'max_input_tokens'):
                    max_input_tokens = llm.pipeline.max_input_tokens
                elif inference_server in ['openai']:
                    max_tokens = llm.modelname_to_contextsize(model_name)
                    # leave some room for 1 paragraph, even if min_new_tokens=0
                    max_input_tokens = max_tokens - 256
                elif inference_server in ['openai_chat']:
                    max_tokens = model_token_mapping[model_name]
                    # leave some room for 1 paragraph, even if min_new_tokens=0
                    max_input_tokens = max_tokens - 256
                elif isinstance(tokenizer, FakeTokenizer):
                    max_input_tokens = tokenizer.model_max_length - 256
                else:
                    # leave some room for 1 paragraph, even if min_new_tokens=0
                    max_input_tokens = 2048 - 256
                max_input_tokens -= template_tokens
                # FIXME: Doesn't account for query, == context, or new lines between contexts
                where_res = np.where(tokens_cumsum < max_input_tokens)[0]
                if where_res.shape[0] == 0:
                    # then no chunk can fit, still do first one
                    top_k_docs_trial = 1
                else:
                    top_k_docs_trial = 1 + where_res[-1]
                if 0 < top_k_docs_trial < max_chunks:
                    # avoid craziness
                    if top_k_docs == -1:
                        top_k_docs = top_k_docs_trial
                    else:
                        top_k_docs = min(top_k_docs, top_k_docs_trial)
                if top_k_docs == -1:
                    # if here, means 0 and just do best with 1 doc
                    print("Unexpected large chunks and can't add to context, will add 1 anyways", flush=True)
                    top_k_docs = 1
                docs_with_score = docs_with_score[:top_k_docs]
            else:
                docs_with_score = db.similarity_search_with_score(query, k=k_db, **filter_kwargs)[:top_k_docs]
            # put most relevant chunks closest to question,
            # esp. if truncation occurs will be "oldest" or "farthest from response" text that is truncated
            # BUT: for small models, e.g. 6_9 pythia, if sees some stuff related to h2oGPT first, it can connect that and not listen to rest
            if reverse_docs:
                docs_with_score.reverse()
            # cut off so no high distance docs/sources considered
            docs = [x[0] for x in docs_with_score if x[1] < cut_distanct]
            scores = [x[1] for x in docs_with_score if x[1] < cut_distanct]
            if len(scores) > 0 and verbose:
                print("Distance: min: %s max: %s mean: %s median: %s" %
                      (scores[0], scores[-1], np.mean(scores), np.median(scores)), flush=True)
    else:
        docs = []
        scores = []

    if not docs and use_context and model_name not in non_hf_types:
        # if HF type and have no docs, can bail out
        return docs, None, [], False

    if cmd in [DocumentChoices.All_Relevant_Only_Sources.name, DocumentChoices.Only_All_Sources.name]:
        # no LLM use
        return docs, None, [], False

    common_words_file = "data/NGSL_1.2_stats.csv.zip"
    if os.path.isfile(common_words_file):
        df = pd.read_csv("data/NGSL_1.2_stats.csv.zip")
        import string
        reduced_query = query.translate(str.maketrans(string.punctuation, ' ' * len(string.punctuation))).strip()
        reduced_query_words = reduced_query.split(' ')
        set_common = set(df['Lemma'].values.tolist())
        num_common = len([x.lower() in set_common for x in reduced_query_words])
        frac_common = num_common / len(reduced_query) if reduced_query else 0
        # FIXME: report to user bad query that uses too many common words
        if verbose:
            print("frac_common: %s" % frac_common, flush=True)

    if len(docs) == 0:
        # avoid context == in prompt then
        use_context = False
        template = template_if_no_docs

    if use_template:
        # instruct-like, rather than few-shot prompt_type='plain' as default
        # but then sources confuse the model with how inserted among rest of text, so avoid
        prompt = PromptTemplate(
            # input_variables=["summaries", "question"],
            input_variables=["context", "question"],
            template=template,
        )
        chain = load_qa_chain(llm, prompt=prompt)
    else:
        chain = load_qa_with_sources_chain(llm)

    if not use_context:
        chain_kwargs = dict(input_documents=[], question=query)
    else:
        chain_kwargs = dict(input_documents=docs, question=query)

    target = wrapped_partial(chain, chain_kwargs)
    return docs, target, scores, use_context


def get_sources_answer(query, answer, scores, show_rank, answer_with_sources, verbose=False):
    if verbose:
        print("query: %s" % query, flush=True)
        print("answer: %s" % answer['output_text'], flush=True)

    if len(answer['input_documents']) == 0:
        extra = ''
        ret = answer['output_text'] + extra
        return ret, extra

    # link
    answer_sources = [(max(0.0, 1.5 - score) / 1.5, get_url(doc)) for score, doc in
                      zip(scores, answer['input_documents'])]
    answer_sources_dict = defaultdict(list)
    [answer_sources_dict[url].append(score) for score, url in answer_sources]
    answers_dict = {}
    for url, scores_url in answer_sources_dict.items():
        answers_dict[url] = np.max(scores_url)
    answer_sources = [(score, url) for url, score in answers_dict.items()]
    answer_sources.sort(key=lambda x: x[0], reverse=True)
    if show_rank:
        # answer_sources = ['%d | %s' % (1 + rank, url) for rank, (score, url) in enumerate(answer_sources)]
        # sorted_sources_urls = "Sources [Rank | Link]:<br>" + "<br>".join(answer_sources)
        answer_sources = ['%s' % url for rank, (score, url) in enumerate(answer_sources)]
        sorted_sources_urls = "Ranked Sources:<br>" + "<br>".join(answer_sources)
    else:
        answer_sources = ['<li>%.2g | %s</li>' % (score, url) for score, url in answer_sources]
        sorted_sources_urls = f"{source_prefix}<p><ul>" + "<p>".join(answer_sources)
        sorted_sources_urls += f"</ul></p>{source_postfix}"

    if not answer['output_text'].endswith('\n'):
        answer['output_text'] += '\n'

    if answer_with_sources:
        extra = '\n' + sorted_sources_urls
    else:
        extra = ''
    ret = answer['output_text'] + extra
    return ret, extra


def clean_doc(docs1):
    if not isinstance(docs1, (list, tuple, types.GeneratorType)):
        docs1 = [docs1]
    for doci, doc in enumerate(docs1):
        docs1[doci].page_content = '\n'.join([x.strip() for x in doc.page_content.split("\n") if x.strip()])
    return docs1


def chunk_sources(sources, chunk=True, chunk_size=512, language=None):
    if not chunk:
        return sources
    if not isinstance(sources, (list, tuple, types.GeneratorType)) and not callable(sources):
        # if just one document
        sources = [sources]
    if language and False:
        # Bug in langchain, keep separator=True not working
        # https://github.com/hwchase17/langchain/issues/2836
        # so avoid this for now
        keep_separator = True
        separators = RecursiveCharacterTextSplitter.get_separators_for_language(language)
    else:
        separators = ["\n\n", "\n", " ", ""]
        keep_separator = False
    splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=0, keep_separator=keep_separator,
                                              separators=separators)
    source_chunks = splitter.split_documents(sources)
    return source_chunks


def get_db_from_hf(dest=".", db_dir='db_dir_DriverlessAI_docs.zip'):
    from huggingface_hub import hf_hub_download
    # True for case when locally already logged in with correct token, so don't have to set key
    token = os.getenv('HUGGINGFACE_API_TOKEN', True)
    path_to_zip_file = hf_hub_download('h2oai/db_dirs', db_dir, token=token, repo_type='dataset')
    import zipfile
    with zipfile.ZipFile(path_to_zip_file, 'r') as zip_ref:
        persist_directory = os.path.dirname(zip_ref.namelist()[0])
        remove(persist_directory)
        zip_ref.extractall(dest)
    return path_to_zip_file


# Note dir has space in some cases, while zip does not
some_db_zips = [['db_dir_DriverlessAI_docs.zip', 'db_dir_DriverlessAI docs', 'CC-BY-NC license'],
                ['db_dir_UserData.zip', 'db_dir_UserData', 'CC-BY license for ArXiv'],
                ['db_dir_github_h2oGPT.zip', 'db_dir_github h2oGPT', 'ApacheV2 license'],
                ['db_dir_wiki.zip', 'db_dir_wiki', 'CC-BY-SA Wikipedia license'],
                # ['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
                ]

all_db_zips = some_db_zips + \
              [['db_dir_wiki_full.zip', 'db_dir_wiki_full.zip', '23GB, 05/04/2023 CC-BY-SA Wiki license'],
               ]


def get_some_dbs_from_hf(dest='.', db_zips=None):
    if db_zips is None:
        db_zips = some_db_zips
    for db_dir, dir_expected, license1 in db_zips:
        path_to_zip_file = get_db_from_hf(dest=dest, db_dir=db_dir)
        assert os.path.isfile(path_to_zip_file), "Missing zip in %s" % path_to_zip_file
        if dir_expected:
            assert os.path.isdir(os.path.join(dest, dir_expected)), "Missing path for %s" % dir_expected
            assert os.path.isdir(os.path.join(dest, dir_expected, 'index')), "Missing index in %s" % dir_expected


def _create_local_weaviate_client():
    WEAVIATE_URL = os.getenv('WEAVIATE_URL', "http://localhost:8080")
    WEAVIATE_USERNAME = os.getenv('WEAVIATE_USERNAME')
    WEAVIATE_PASSWORD = os.getenv('WEAVIATE_PASSWORD')
    WEAVIATE_SCOPE = os.getenv('WEAVIATE_SCOPE', "offline_access")

    resource_owner_config = None
    try:
        import weaviate
        if WEAVIATE_USERNAME is not None and WEAVIATE_PASSWORD is not None:
            resource_owner_config = weaviate.AuthClientPassword(
                username=WEAVIATE_USERNAME,
                password=WEAVIATE_PASSWORD,
                scope=WEAVIATE_SCOPE
            )

        client = weaviate.Client(WEAVIATE_URL, auth_client_secret=resource_owner_config)
        return client
    except Exception as e:
        print(f"Failed to create Weaviate client: {e}")
        return None


if __name__ == '__main__':
    pass