Spaces:
Runtime error
Runtime error
File size: 106,493 Bytes
eeb7ca1 1e6e9f4 eeb7ca1 0539589 eeb7ca1 0539589 eeb7ca1 0539589 eeb7ca1 0539589 eeb7ca1 0539589 eeb7ca1 0539589 eeb7ca1 1e6e9f4 eeb7ca1 1e6e9f4 eeb7ca1 1e6e9f4 eeb7ca1 0539589 eeb7ca1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 |
import copy
import functools
import inspect
import json
import os
import pprint
import random
import sys
import traceback
import uuid
import filelock
import pandas as pd
import requests
import tabulate
from gradio_ui.css import get_css
from gradio_ui.prompt_form import make_prompt_form
# This is a hack to prevent Gradio from phoning home when it gets imported
os.environ['GRADIO_ANALYTICS_ENABLED'] = 'False'
def my_get(url, **kwargs):
print('Gradio HTTP request redirected to localhost :)', flush=True)
kwargs.setdefault('allow_redirects', True)
return requests.api.request('get', 'http://127.0.0.1/', **kwargs)
original_get = requests.get
requests.get = my_get
import gradio as gr
requests.get = original_get
from enums import DocumentChoices
from gradio_themes import H2oTheme, SoftTheme, get_h2o_title, get_simple_title, get_dark_js
from prompter import Prompter, \
prompt_type_to_model_name, prompt_types_strings, inv_prompt_type_to_model_lower, generate_prompt, non_hf_types, \
get_prompt
from utils import get_githash, flatten_list, zip_data, s3up, clear_torch_cache, get_torch_allocated, system_info_print, \
ping, get_short_name, get_url, makedirs, get_kwargs
from generate import get_model, languages_covered, evaluate, eval_func_param_names, score_qa, langchain_modes, \
inputs_kwargs_list, get_cutoffs, scratch_base_dir, evaluate_from_str, no_default_param_names, \
eval_func_param_names_defaults, get_max_max_new_tokens
from apscheduler.schedulers.background import BackgroundScheduler
def fix_newlines(text):
# ensure good visually, else markdown ignores multiple \n
# handle code blocks
ts = text.split('```')
for parti, part in enumerate(ts):
inside = parti % 2 == 1
if not inside:
ts[parti] = ts[parti].replace('\n', '<br>')
return '```'.join(ts)
def go_gradio(**kwargs):
allow_api = kwargs['allow_api']
is_public = kwargs['is_public']
is_hf = kwargs['is_hf']
memory_restriction_level = kwargs['memory_restriction_level']
n_gpus = kwargs['n_gpus']
admin_pass = kwargs['admin_pass']
model_state0 = kwargs['model_state0']
score_model_state0 = kwargs['score_model_state0']
dbs = kwargs['dbs']
db_type = kwargs['db_type']
visible_langchain_modes = kwargs['visible_langchain_modes']
allow_upload_to_user_data = kwargs['allow_upload_to_user_data']
allow_upload_to_my_data = kwargs['allow_upload_to_my_data']
enable_sources_list = kwargs['enable_sources_list']
enable_url_upload = kwargs['enable_url_upload']
enable_text_upload = kwargs['enable_text_upload']
use_openai_embedding = kwargs['use_openai_embedding']
hf_embedding_model = kwargs['hf_embedding_model']
enable_captions = kwargs['enable_captions']
captions_model = kwargs['captions_model']
enable_ocr = kwargs['enable_ocr']
caption_loader = kwargs['caption_loader']
# easy update of kwargs needed for evaluate() etc.
queue = True
allow_upload = allow_upload_to_user_data or allow_upload_to_my_data
kwargs.update(locals())
if 'mbart-' in kwargs['model_lower']:
instruction_label_nochat = "Text to translate"
else:
instruction_label_nochat = "Instruction (Shift-Enter or push Submit to send message," \
" use Enter for multiple input lines)"
title = 'h2oGPT'
if 'h2ogpt-research' in kwargs['base_model']:
title += " [Research demonstration]"
more_info = """For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O-LLMStudio](https://github.com/h2oai/h2o-llmstudio)<br>"""
if is_public:
more_info += """<iframe src="https://ghbtns.com/github-btn.html?user=h2oai&repo=h2ogpt&type=star&count=true&size=small" frameborder="0" scrolling="0" width="150" height="20" title="GitHub"></iframe>"""
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit our GitHub pages: [h2oGPT](https://github.com/h2oai/h2ogpt) and [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
Command: {str(' '.join(sys.argv))}
Hash: {get_githash()}
"""
else:
description = more_info
description += "If this host is busy, try [12B](https://gpt.h2o.ai), [Falcon 40B](http://falcon.h2o.ai), [HF Spaces1 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot) or [HF Spaces2 12B](https://huggingface.co/spaces/h2oai/h2ogpt-chatbot2)<br>"
description += """<p>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md)</p>"""
if is_hf:
description += '''<a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" style="white-space: nowrap" alt="Duplicate Space"></a>'''
if kwargs['verbose']:
task_info_md = f"""
### Task: {kwargs['task_info']}"""
else:
task_info_md = ''
css_code = get_css(kwargs)
if kwargs['gradio_avoid_processing_markdown']:
from gradio_client import utils as client_utils
from gradio.components import Chatbot
# gradio has issue with taking too long to process input/output for markdown etc.
# Avoid for now, allow raw html to render, good enough for chatbot.
def _postprocess_chat_messages(self, chat_message: str):
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
filepath = chat_message[0]
mime_type = client_utils.get_mimetype(filepath)
filepath = self.make_temp_copy_if_needed(filepath)
return {
"name": filepath,
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(chat_message, str):
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
Chatbot._postprocess_chat_messages = _postprocess_chat_messages
if kwargs['gradio_offline_level'] >= 0:
# avoid GoogleFont that pulls from internet
if kwargs['gradio_offline_level'] == 1:
# front end would still have to download fonts or have cached it at some point
base_font = 'Source Sans Pro'
else:
base_font = 'Helvetica'
theme_kwargs = dict(font=(base_font, 'ui-sans-serif', 'system-ui', 'sans-serif'),
font_mono=('IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'))
else:
theme_kwargs = dict()
theme = H2oTheme(**theme_kwargs) if kwargs['h2ocolors'] else SoftTheme(**theme_kwargs)
demo = gr.Blocks(theme=theme, css=css_code, title="h2oGPT", analytics_enabled=False)
callback = gr.CSVLogger()
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
if kwargs['base_model'].strip() not in model_options:
lora_options = [kwargs['base_model'].strip()] + model_options
lora_options = kwargs['extra_lora_options']
if kwargs['lora_weights'].strip() not in lora_options:
lora_options = [kwargs['lora_weights'].strip()] + lora_options
# always add in no lora case
# add fake space so doesn't go away in gradio dropdown
no_lora_str = no_model_str = '[None/Remove]'
lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
# always add in no model case so can free memory
# add fake space so doesn't go away in gradio dropdown
model_options = [no_model_str] + model_options
# transcribe, will be detranscribed before use by evaluate()
if not kwargs['lora_weights'].strip():
kwargs['lora_weights'] = no_lora_str
if not kwargs['base_model'].strip():
kwargs['base_model'] = no_model_str
# transcribe for gradio
kwargs['gpu_id'] = str(kwargs['gpu_id'])
no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
'base_model') else no_model_msg
output_label0_model2 = no_model_msg
default_kwargs = {k: kwargs[k] for k in eval_func_param_names_defaults}
for k in no_default_param_names:
default_kwargs[k] = ''
with demo:
# avoid actual model/tokenizer here or anything that would be bad to deepcopy
# https://github.com/gradio-app/gradio/issues/3558
model_state = gr.State(['model', 'tokenizer', kwargs['device'], kwargs['base_model']])
model_state2 = gr.State([None, None, None, None])
model_options_state = gr.State([model_options])
lora_options_state = gr.State([lora_options])
my_db_state = gr.State([None, None])
chat_state = gr.State({})
# make user default first and default choice, dedup
docs_state00 = kwargs['document_choice'] + [x.name for x in list(DocumentChoices)]
docs_state0 = []
[docs_state0.append(x) for x in docs_state00 if x not in docs_state0]
docs_state = gr.State(docs_state0) # first is chosen as default
gr.Markdown(f"""
{get_h2o_title(title) if kwargs['h2ocolors'] else get_simple_title(title)}
{description}
{task_info_md}
""")
if is_hf:
gr.HTML(
)
# go button visible if
base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
normal_block = gr.Row(visible=not base_wanted)
with normal_block:
with gr.Tabs():
with gr.Row():
col_nochat = gr.Column(visible=not kwargs['chat'])
with col_nochat: # FIXME: for model comparison, and check rest
if kwargs['langchain_mode'] == 'Disabled':
text_output_nochat = gr.Textbox(lines=5, label=output_label0).style(show_copy_button=True)
else:
# text looks a bit worse, but HTML links work
text_output_nochat = gr.HTML(label=output_label0)
instruction_nochat = gr.Textbox(
lines=kwargs['input_lines'],
label=instruction_label_nochat,
placeholder=kwargs['placeholder_instruction'],
)
iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
placeholder=kwargs['placeholder_input'])
submit_nochat = gr.Button("Submit")
flag_btn_nochat = gr.Button("Flag")
if not kwargs['auto_score']:
with gr.Column(visible=kwargs['score_model']):
score_btn_nochat = gr.Button("Score last prompt & response")
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
col_chat = gr.Column(visible=kwargs['chat'])
with col_chat:
with gr.Row():
text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
height=kwargs['height'] or 400)
instruction, submit, stop_btn = make_prompt_form(kwargs)
with gr.Row():
clear = gr.Button("Save Chat / New Chat")
flag_btn = gr.Button("Flag")
if not kwargs['auto_score']: # FIXME: For checkbox model2
with gr.Column(visible=kwargs['score_model']):
with gr.Row():
score_btn = gr.Button("Score last prompt & response").style(
full_width=False, size='sm')
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_res2 = gr.Row(visible=False)
with score_res2:
score_btn2 = gr.Button("Score last prompt & response 2").style(
full_width=False, size='sm')
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
else:
with gr.Column(visible=kwargs['score_model']):
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
retry = gr.Button("Regenerate")
undo = gr.Button("Undo")
submit_nochat_api = gr.Button("Submit nochat API", visible=False)
inputs_dict_str = gr.Textbox(label='API input for nochat', show_label=False, visible=False)
text_output_nochat_api = gr.Textbox(lines=5, label='API nochat output', visible=False).style(
show_copy_button=True)
with gr.TabItem("Chat"):
with gr.Row():
if 'mbart-' in kwargs['model_lower']:
src_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['src_lang'],
label="Input Language")
tgt_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['tgt_lang'],
label="Output Language")
radio_chats = gr.Radio(value=None, label="Saved Chats", visible=True, interactive=True,
type='value')
with gr.Row():
clear_chat_btn = gr.Button(value="Clear Chat", visible=True).style(size='sm')
export_chats_btn = gr.Button(value="Export Chats to Download").style(size='sm')
remove_chat_btn = gr.Button(value="Remove Selected Chat", visible=True).style(size='sm')
add_to_chats_btn = gr.Button("Import Chats from Upload").style(size='sm')
with gr.Row():
chats_file = gr.File(interactive=False, label="Download Exported Chats")
chatsup_output = gr.File(label="Upload Chat File(s)",
file_types=['.json'],
file_count='multiple',
elem_id="warning", elem_classes="feedback")
with gr.TabItem("Data Source"):
langchain_readme = get_url('https://github.com/h2oai/h2ogpt/blob/main/docs/README_LangChain.md',
from_str=True)
gr.HTML(value=f"""LangChain Support Disabled<p>
Run:<p>
<code>
python generate.py --langchain_mode=MyData
</code>
<p>
For more options see: {langchain_readme}""",
visible=kwargs['langchain_mode'] == 'Disabled', interactive=False)
data_row1 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled')
with data_row1:
if is_hf:
# don't show 'wiki' since only usually useful for internal testing at moment
no_show_modes = ['Disabled', 'wiki']
else:
no_show_modes = ['Disabled']
allowed_modes = visible_langchain_modes.copy()
allowed_modes = [x for x in allowed_modes if x in dbs]
allowed_modes += ['ChatLLM', 'LLM']
if allow_upload_to_my_data and 'MyData' not in allowed_modes:
allowed_modes += ['MyData']
if allow_upload_to_user_data and 'UserData' not in allowed_modes:
allowed_modes += ['UserData']
langchain_mode = gr.Radio(
[x for x in langchain_modes if x in allowed_modes and x not in no_show_modes],
value=kwargs['langchain_mode'],
label="Data Collection of Sources",
visible=kwargs['langchain_mode'] != 'Disabled')
data_row2 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled')
with data_row2:
with gr.Column(scale=50):
document_choice = gr.Dropdown(docs_state.value,
label="Choose Subset of Doc(s) in Collection [click get sources to update]",
value=docs_state.value[0],
interactive=True,
multiselect=True,
)
with gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list):
get_sources_btn = gr.Button(value="Get Sources",
).style(full_width=False, size='sm')
show_sources_btn = gr.Button(value="Show Sources",
).style(full_width=False, size='sm')
refresh_sources_btn = gr.Button(value="Refresh Sources",
).style(full_width=False, size='sm')
# import control
if kwargs['langchain_mode'] != 'Disabled':
from gpt_langchain import file_types, have_arxiv
else:
have_arxiv = False
file_types = []
upload_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload).style(
equal_height=False)
with upload_row:
with gr.Column():
file_types_str = '[' + ' '.join(file_types) + ']'
fileup_output = gr.File(label=f'Upload {file_types_str}',
file_types=file_types,
file_count="multiple",
elem_id="warning", elem_classes="feedback")
with gr.Row():
add_to_shared_db_btn = gr.Button("Add File(s) to UserData",
visible=allow_upload_to_user_data, elem_id='small_btn')
add_to_my_db_btn = gr.Button("Add File(s) to Scratch MyData",
visible=allow_upload_to_my_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
).style(
size='sm' if not allow_upload_to_user_data else None)
with gr.Column(
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_url_upload):
url_label = 'URL (http/https) or ArXiv:' if have_arxiv else 'URL (http/https)'
url_text = gr.Textbox(label=url_label, interactive=True)
with gr.Row():
url_user_btn = gr.Button(value='Add URL content to Shared UserData',
visible=allow_upload_to_user_data, elem_id='small_btn')
url_my_btn = gr.Button(value='Add URL content to Scratch MyData',
visible=allow_upload_to_my_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
).style(size='sm' if not allow_upload_to_user_data else None)
with gr.Column(
visible=kwargs['langchain_mode'] != 'Disabled' and allow_upload and enable_text_upload):
user_text_text = gr.Textbox(label='Paste Text [Shift-Enter more lines]', interactive=True)
with gr.Row():
user_text_user_btn = gr.Button(value='Add Text to Shared UserData',
visible=allow_upload_to_user_data,
elem_id='small_btn')
user_text_my_btn = gr.Button(value='Add Text to Scratch MyData',
visible=allow_upload_to_my_data,
elem_id='small_btn' if allow_upload_to_user_data else None,
).style(
size='sm' if not allow_upload_to_user_data else None)
with gr.Column(visible=False):
# WIP:
with gr.Row(visible=False).style(equal_height=False):
github_textbox = gr.Textbox(label="Github URL")
with gr.Row(visible=True):
github_shared_btn = gr.Button(value="Add Github to Shared UserData",
visible=allow_upload_to_user_data,
elem_id='small_btn')
github_my_btn = gr.Button(value="Add Github to Scratch MyData",
visible=allow_upload_to_my_data, elem_id='small_btn')
sources_row3 = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style(
equal_height=False)
with sources_row3:
with gr.Column(scale=1):
file_source = gr.File(interactive=False,
label="Download File w/Sources [click get sources to make file]")
with gr.Column(scale=2):
pass
sources_row = gr.Row(visible=kwargs['langchain_mode'] != 'Disabled' and enable_sources_list).style(
equal_height=False)
with sources_row:
sources_text = gr.HTML(label='Sources Added', interactive=False)
with gr.TabItem("Expert"):
with gr.Row():
with gr.Column():
stream_output = gr.components.Checkbox(label="Stream output",
value=kwargs['stream_output'])
prompt_type = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type",
visible=not is_public)
prompt_type2 = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type Model 2",
visible=not is_public and False)
do_sample = gr.Checkbox(label="Sample",
info="Enable sampler, required for use of temperature, top_p, top_k",
value=kwargs['do_sample'])
temperature = gr.Slider(minimum=0.01, maximum=3,
value=kwargs['temperature'],
label="Temperature",
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
top_p = gr.Slider(minimum=0, maximum=1,
value=kwargs['top_p'], label="Top p",
info="Cumulative probability of tokens to sample from")
top_k = gr.Slider(
minimum=0, maximum=100, step=1,
value=kwargs['top_k'], label="Top k",
info='Num. tokens to sample from'
)
# FIXME: https://github.com/h2oai/h2ogpt/issues/106
if os.getenv('TESTINGFAIL'):
max_beams = 8 if not (memory_restriction_level or is_public) else 1
else:
max_beams = 1
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
value=min(max_beams, kwargs['num_beams']), label="Beams",
info="Number of searches for optimal overall probability. "
"Uses more GPU memory/compute")
max_max_new_tokens = get_max_max_new_tokens(model_state0, **kwargs)
max_new_tokens = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
)
min_new_tokens = gr.Slider(
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
)
max_new_tokens2 = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length 2",
visible=False,
)
min_new_tokens2 = gr.Slider(
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length 2",
visible=False,
)
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
value=kwargs['early_stopping'])
max_max_time = 60 * 20 if not is_public else 60 * 2
if is_hf:
max_max_time = min(max_max_time, 60 * 1)
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
value=min(max_max_time, kwargs['max_time']), label="Max. time",
info="Max. time to search optimal output.")
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
value=kwargs['repetition_penalty'],
label="Repetition Penalty")
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
value=kwargs['num_return_sequences'],
label="Number Returns", info="Must be <= num_beams",
visible=not is_public)
iinput = gr.Textbox(lines=4, label="Input",
placeholder=kwargs['placeholder_input'],
visible=not is_public)
context = gr.Textbox(lines=3, label="System Pre-Context",
info="Directly pre-appended without prompt processing",
visible=not is_public)
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
visible=not is_public)
count_chat_tokens_btn = gr.Button(value="Count Chat Tokens", visible=not is_public)
chat_token_count = gr.Textbox(label="Chat Token Count", value=None,
visible=not is_public, interactive=False)
chunk = gr.components.Checkbox(value=kwargs['chunk'],
label="Whether to chunk documents",
info="For LangChain",
visible=not is_public)
top_k_docs = gr.Slider(minimum=0, maximum=100, step=1,
value=kwargs['top_k_docs'],
label="Number of document chunks",
info="For LangChain",
visible=not is_public)
chunk_size = gr.Number(value=kwargs['chunk_size'],
label="Chunk size for document chunking",
info="For LangChain (ignored if chunk=False)",
visible=not is_public,
precision=0)
with gr.TabItem("Models"):
load_msg = "Load-Unload Model/LORA [unload works if did not use --base_model]" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
load_msg2 = "Load-Unload Model/LORA 2 [unload works if did not use --base_model]" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
compare_checkbox = gr.components.Checkbox(label="Compare Mode",
value=False, visible=not is_public)
with gr.Row():
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
with gr.Column():
with gr.Row():
with gr.Column(scale=20):
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
value=kwargs['base_model'])
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
value=kwargs['lora_weights'], visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button = gr.Button(load_msg).style(full_width=False, size='sm')
model_load8bit_checkbox = gr.components.Checkbox(
label="Load 8-bit [requires support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox = gr.components.Checkbox(
label="Choose Devices [If not Checked, use all GPUs]",
value=kwargs['infer_devices'])
model_gpu = gr.Dropdown(n_gpus_list,
label="GPU ID [-1 = all GPUs, if Choose is enabled]",
value=kwargs['gpu_id'])
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'],
interactive=False)
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
visible=kwargs['show_lora'], interactive=False)
prompt_dict = gr.Textbox(label="Prompt (or Custom)",
value=pprint.pformat(kwargs['prompt_dict'], indent=4),
interactive=True, lines=4)
col_model2 = gr.Column(visible=False)
with col_model2:
with gr.Row():
with gr.Column(scale=20):
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
value=no_model_str)
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
value=no_lora_str,
visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button2 = gr.Button(load_msg2).style(full_width=False, size='sm')
model_load8bit_checkbox2 = gr.components.Checkbox(
label="Load 8-bit 2 [requires support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox2 = gr.components.Checkbox(
label="Choose Devices 2 [If not Checked, use all GPUs]",
value=kwargs[
'infer_devices'])
model_gpu2 = gr.Dropdown(n_gpus_list,
label="GPU ID 2 [-1 = all GPUs, if choose is enabled]",
value=kwargs['gpu_id'])
# no model/lora loaded ever in model2 by default
model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
visible=kwargs['show_lora'])
prompt_dict2 = gr.Textbox(label="Prompt (or Custom) 2",
value=pprint.pformat(kwargs['prompt_dict'], indent=4),
interactive=True, lines=4)
with gr.Row():
with gr.Column(scale=50):
new_model = gr.Textbox(label="New Model HF name/path")
with gr.Row():
add_model_button = gr.Button("Add new model name").style(full_width=False, size='sm')
with gr.Column(scale=50):
new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
with gr.Row():
add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora']).style(
full_width=False, size='sm')
with gr.TabItem("System"):
admin_row = gr.Row()
with admin_row:
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
admin_btn = gr.Button(value="Admin Access", visible=is_public)
system_row = gr.Row(visible=not is_public)
with system_row:
with gr.Column():
with gr.Row():
system_btn = gr.Button(value='Get System Info')
system_text = gr.Textbox(label='System Info', interactive=False).style(
show_copy_button=True)
with gr.Row():
zip_btn = gr.Button("Zip")
zip_text = gr.Textbox(label="Zip file name", interactive=False)
file_output = gr.File(interactive=False, label="Zip file to Download")
with gr.Row():
s3up_btn = gr.Button("S3UP")
s3up_text = gr.Textbox(label='S3UP result', interactive=False)
with gr.TabItem("Disclaimers"):
description = ""
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>"""
if kwargs['load_8bit']:
description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>"""
if 'h2ogpt-research' in kwargs['base_model']:
description += """<i><li>Research demonstration only, not used for commercial purposes.</i></li>"""
description += """<i><li>By using h2oGPT, you accept our <a href="https://github.com/h2oai/h2ogpt/blob/main/docs/tos.md">Terms of Service</a></i></li></ul></p>"""
gr.Markdown(value=description, show_label=False, interactive=False)
# Get flagged data
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text], queue=False,
api_name='zip_data' if allow_api else None)
s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text, queue=False,
api_name='s3up_data' if allow_api else None)
def make_add_visible(x):
return gr.update(visible=x is not None)
def clear_file_list():
return None
def make_invisible():
return gr.update(visible=False)
def make_visible():
return gr.update(visible=True)
def update_radio_to_user():
return gr.update(value='UserData')
# Add to UserData
update_user_db_func = functools.partial(update_user_db,
dbs=dbs, db_type=db_type, langchain_mode='UserData',
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model,
enable_captions=enable_captions,
captions_model=captions_model,
enable_ocr=enable_ocr,
caption_loader=caption_loader,
verbose=kwargs['verbose'],
)
# note for update_user_db_func output is ignored for db
add_to_shared_db_btn.click(update_user_db_func,
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_to_shared' if allow_api and allow_upload_to_user_data else None) \
.then(clear_file_list, outputs=fileup_output, queue=queue) \
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
# .then(make_invisible, outputs=add_to_shared_db_btn, queue=queue)
# .then(make_visible, outputs=upload_button, queue=queue)
def clear_textbox():
return gr.Textbox.update(value='')
update_user_db_url_func = functools.partial(update_user_db_func, is_url=True)
url_user_btn.click(update_user_db_url_func,
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_url_to_shared' if allow_api and allow_upload_to_user_data else None) \
.then(clear_textbox, outputs=url_text, queue=queue) \
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
update_user_db_txt_func = functools.partial(update_user_db_func, is_txt=True)
user_text_user_btn.click(update_user_db_txt_func,
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_text_to_shared' if allow_api and allow_upload_to_user_data else None) \
.then(clear_textbox, outputs=user_text_text, queue=queue) \
.then(update_radio_to_user, inputs=None, outputs=langchain_mode, queue=False)
# Add to MyData
def update_radio_to_my():
return gr.update(value='MyData')
update_my_db_func = functools.partial(update_user_db, dbs=dbs, db_type=db_type, langchain_mode='MyData',
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model,
enable_captions=enable_captions,
captions_model=captions_model,
enable_ocr=enable_ocr,
caption_loader=caption_loader,
verbose=kwargs['verbose'],
)
add_to_my_db_btn.click(update_my_db_func,
inputs=[fileup_output, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_to_my' if allow_api and allow_upload_to_my_data else None) \
.then(clear_file_list, outputs=fileup_output, queue=queue) \
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
# .then(make_invisible, outputs=add_to_shared_db_btn, queue=queue)
# .then(make_visible, outputs=upload_button, queue=queue)
update_my_db_url_func = functools.partial(update_my_db_func, is_url=True)
url_my_btn.click(update_my_db_url_func,
inputs=[url_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_url_to_my' if allow_api and allow_upload_to_my_data else None) \
.then(clear_textbox, outputs=url_text, queue=queue) \
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
update_my_db_txt_func = functools.partial(update_my_db_func, is_txt=True)
user_text_my_btn.click(update_my_db_txt_func,
inputs=[user_text_text, my_db_state, add_to_shared_db_btn, add_to_my_db_btn,
chunk, chunk_size],
outputs=[my_db_state, add_to_shared_db_btn, add_to_my_db_btn, sources_text], queue=queue,
api_name='add_txt_to_my' if allow_api and allow_upload_to_my_data else None) \
.then(clear_textbox, outputs=user_text_text, queue=queue) \
.then(update_radio_to_my, inputs=None, outputs=langchain_mode, queue=False)
get_sources1 = functools.partial(get_sources, dbs=dbs, docs_state0=docs_state0)
# if change collection source, must clear doc selections from it to avoid inconsistency
def clear_doc_choice():
return gr.Dropdown.update(choices=docs_state0, value=[docs_state0[0]])
langchain_mode.change(clear_doc_choice, inputs=None, outputs=document_choice)
def update_dropdown(x):
return gr.Dropdown.update(choices=x, value=[docs_state0[0]])
get_sources_btn.click(get_sources1, inputs=[my_db_state, langchain_mode], outputs=[file_source, docs_state],
queue=queue,
api_name='get_sources' if allow_api else None) \
.then(fn=update_dropdown, inputs=docs_state, outputs=document_choice)
# show button, else only show when add. Could add to above get_sources for download/dropdown, but bit much maybe
show_sources1 = functools.partial(get_source_files_given_langchain_mode, dbs=dbs)
show_sources_btn.click(fn=show_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text,
api_name='show_sources' if allow_api else None)
# Get inputs to evaluate() and make_db()
# don't deepcopy, can contain model itself
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
refresh_sources1 = functools.partial(update_and_get_source_files_given_langchain_mode,
**get_kwargs(update_and_get_source_files_given_langchain_mode,
exclude_names=['db1', 'langchain_mode'],
**all_kwargs))
refresh_sources_btn.click(fn=refresh_sources1, inputs=[my_db_state, langchain_mode], outputs=sources_text,
api_name='refresh_sources' if allow_api else None)
def check_admin_pass(x):
return gr.update(visible=x == admin_pass)
def close_admin(x):
return gr.update(visible=not (x == admin_pass))
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row, queue=False) \
.then(close_admin, inputs=admin_pass_textbox, outputs=admin_row, queue=False)
inputs_list, inputs_dict = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=1)
inputs_list2, inputs_dict2 = get_inputs_list(all_kwargs, kwargs['model_lower'], model_id=2)
from functools import partial
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
# ensure present
for k in inputs_kwargs_list:
assert k in kwargs_evaluate, "Missing %s" % k
def evaluate_gradio(*args1, **kwargs1):
for res_dict in evaluate(*args1, **kwargs1):
yield '<br>' + fix_newlines(res_dict['response'])
fun = partial(evaluate_gradio,
**kwargs_evaluate)
fun2 = partial(evaluate_gradio,
**kwargs_evaluate)
fun_with_dict_str = partial(evaluate_from_str,
default_kwargs=default_kwargs,
**kwargs_evaluate
)
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
size="sm",
)
# FIXME: Could add exceptions for non-chat but still streaming
exception_text = gr.Textbox(value="", visible=kwargs['chat'], label='Chat Exceptions', interactive=False)
dark_mode_btn.click(
None,
None,
None,
_js=get_dark_js(),
api_name="dark" if allow_api else None,
queue=False,
)
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
def col_nochat_fun(x):
return gr.Column.update(visible=not x)
def col_chat_fun(x):
return gr.Column.update(visible=x)
def context_fun(x):
return gr.Textbox.update(visible=not x)
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox" if allow_api else None) \
.then(col_chat_fun, chat, col_chat) \
.then(context_fun, chat, context) \
.then(col_chat_fun, chat, exception_text)
# examples after submit or any other buttons for chat or no chat
if kwargs['examples'] is not None and kwargs['show_examples']:
gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
# Score
def score_last_response(*args, nochat=False, model2=False):
""" Similar to user() """
args_list = list(args)
if memory_restriction_level > 0:
max_length_tokenize = 768 - 256 if memory_restriction_level <= 2 else 512 - 256
else:
max_length_tokenize = 2048 - 256
cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
smodel = score_model_state0[0]
stokenizer = score_model_state0[1]
sdevice = score_model_state0[2]
if not nochat:
history = args_list[-1]
if history is None:
if not model2:
# maybe only doing first model, no need to complain
print("Bad history in scoring last response, fix for now", flush=True)
history = []
if smodel is not None and \
stokenizer is not None and \
sdevice is not None and \
history is not None and len(history) > 0 and \
history[-1] is not None and \
len(history[-1]) >= 2:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
question = history[-1][0]
answer = history[-1][1]
else:
return 'Response Score: NA'
else:
answer = args_list[-1]
instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
question = args_list[instruction_nochat_arg_id]
if question is None:
return 'Response Score: Bad Question'
if answer is None:
return 'Response Score: Bad Answer'
try:
score = score_qa(smodel, stokenizer, max_length_tokenize, question, answer, cutoff_len)
finally:
clear_torch_cache()
if isinstance(score, str):
return 'Response Score: NA'
return 'Response Score: {:.1%}'.format(score)
def noop_score_last_response(*args, **kwargs):
return "Response Score: Disabled"
if kwargs['score_model']:
score_fun = score_last_response
else:
score_fun = noop_score_last_response
score_args = dict(fn=score_fun,
inputs=inputs_list + [text_output],
outputs=[score_text],
)
score_args2 = dict(fn=partial(score_fun, model2=True),
inputs=inputs_list2 + [text_output2],
outputs=[score_text2],
)
score_args_nochat = dict(fn=partial(score_fun, nochat=True),
inputs=inputs_list + [text_output_nochat],
outputs=[score_text_nochat],
)
if not kwargs['auto_score']:
score_event = score_btn.click(**score_args, queue=queue, api_name='score' if allow_api else None) \
.then(**score_args2, queue=queue, api_name='score2' if allow_api else None) \
.then(clear_torch_cache)
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=queue,
api_name='score_nochat' if allow_api else None) \
.then(clear_torch_cache)
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
"""
User that fills history for bot
:param args:
:param undo:
:param sanitize_user_prompt:
:param model2:
:return:
"""
args_list = list(args)
user_message = args_list[eval_func_param_names.index('instruction')] # chat only
input1 = args_list[eval_func_param_names.index('iinput')] # chat only
context1 = args_list[eval_func_param_names.index('context')]
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]
chat1 = args_list[eval_func_param_names.index('chat')]
stream_output1 = args_list[eval_func_param_names.index('stream_output')]
if input1 and not user_message.endswith(':'):
user_message1 = user_message + ":" + input1
elif input1:
user_message1 = user_message + input1
else:
user_message1 = user_message
if sanitize_user_prompt:
from better_profanity import profanity
user_message1 = profanity.censor(user_message1)
# FIXME: WIP to use desired seperator when user enters nothing
prompter = Prompter(prompt_type1, prompt_dict1, debug=kwargs['debug'], chat=chat1,
stream_output=stream_output1)
if user_message1 in ['']:
# e.g. when user just hits enter in textbox,
# else will have <human>: <bot>: on single line, which seems to be "ok" for LLM but not usual
user_message1 = '\n'
user_message1 = fix_newlines(user_message1)
history = args_list[-1]
if undo and history:
history.pop()
args_list = args_list[:-1] # FYI, even if unused currently
if history is None:
if not model2:
# no need to complain so often unless model1
print("Bad history, fix for now", flush=True)
history = []
# ensure elements not mixed across models as output,
# even if input is currently same source
history = history.copy()
if undo:
return history
else:
# FIXME: compare, same history for now
return history + [[user_message1, None]]
def history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1, model_max_length1):
# ensure output will be unique to models
_, _, _, max_prompt_length = get_cutoffs(memory_restriction_level,
for_context=True, model_max_length=model_max_length1)
history = copy.deepcopy(history)
context1 = ''
if max_prompt_length is not None and langchain_mode1 not in ['LLM']:
context1 = ''
# - 1 below because current instruction already in history from user()
for histi in range(0, len(history) - 1):
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
prompt, pre_response, terminate_response, chat_sep = generate_prompt(data_point,
prompt_type1,
prompt_dict1,
chat1, reduced=True)
# md -> back to text, maybe not super important if model trained enough
if not kwargs['keep_sources_in_context']:
from gpt_langchain import source_prefix, source_postfix
import re
prompt = re.sub(f'{re.escape(source_prefix)}.*?{re.escape(source_postfix)}', '', prompt,
flags=re.DOTALL)
if prompt.endswith('\n<p>'):
prompt = prompt[:-4]
prompt = prompt.replace('<br>', chat_sep)
if not prompt.endswith(chat_sep):
prompt += chat_sep
# most recent first, add older if can
# only include desired chat history
if len(prompt + context1) > max_prompt_length:
break
context1 = prompt + context1
_, pre_response, terminate_response, chat_sep = generate_prompt({}, prompt_type1, prompt_dict1,
chat1, reduced=True)
if context1 and not context1.endswith(chat_sep):
context1 += chat_sep # ensure if terminates abruptly, then human continues on next line
return context1
def get_model_max_length(model_state1):
if model_state1 and not isinstance(model_state1[1], str):
tokenizer = model_state1[1]
elif model_state0 and not isinstance(model_state0[1], str):
tokenizer = model_state0[1]
else:
tokenizer = None
if tokenizer is not None:
return tokenizer.model_max_length
else:
return 2000
def bot(*args, retry=False):
"""
bot that consumes history for user input
instruction (from input_list) itself is not consumed by bot
:param args:
:param retry:
:return:
"""
# don't deepcopy, can contain model itself
args_list = list(args).copy()
model_state1 = args_list[-3]
my_db_state1 = args_list[-2]
history = args_list[-1]
if model_state1[0] is None or model_state1[0] == no_model_str:
history = []
yield history, ''
return
args_list = args_list[:-3] # only keep rest needed for evaluate()
langchain_mode1 = args_list[eval_func_param_names.index('langchain_mode')]
if retry and history:
history.pop()
if not args_list[eval_func_param_names.index('do_sample')]:
# if was not sampling, no point in retry unless change to sample
args_list[eval_func_param_names.index('do_sample')] = True
if not history:
print("No history", flush=True)
history = []
yield history, ''
return
instruction1 = history[-1][0]
if not instruction1:
# reject empty query, can sometimes go nuts
history = []
yield history, ''
return
prompt_type1 = args_list[eval_func_param_names.index('prompt_type')]
prompt_dict1 = args_list[eval_func_param_names.index('prompt_dict')]
chat1 = args_list[eval_func_param_names.index('chat')]
model_max_length1 = get_model_max_length(model_state1)
context1 = history_to_context(history, langchain_mode1, prompt_type1, prompt_dict1, chat1,
model_max_length1)
args_list[0] = instruction1 # override original instruction with history from user
args_list[2] = context1
fun1 = partial(evaluate,
model_state1,
my_db_state1,
**kwargs_evaluate)
try:
for output_fun in fun1(*tuple(args_list)):
output = output_fun['response']
extra = output_fun['sources'] # FIXME: can show sources in separate text box etc.
# ensure good visually, else markdown ignores multiple \n
bot_message = fix_newlines(output)
history[-1][1] = bot_message
yield history, ''
except StopIteration:
yield history, ''
except RuntimeError as e:
if "generator raised StopIteration" in str(e):
# assume last entry was bad, undo
history.pop()
yield history, ''
else:
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
history[-1][1] = ''
yield history, str(e)
raise
except Exception as e:
# put error into user input
ex = "Exception: %s" % str(e)
if history and len(history) > 0 and len(history[0]) > 1 and history[-1][1] is None:
history[-1][1] = ''
yield history, ex
raise
finally:
clear_torch_cache()
return
# NORMAL MODEL
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
inputs=inputs_list + [text_output],
outputs=text_output,
)
bot_args = dict(fn=bot,
inputs=inputs_list + [model_state, my_db_state] + [text_output],
outputs=[text_output, exception_text],
)
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state, my_db_state] + [text_output],
outputs=[text_output, exception_text],
)
undo_user_args = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output],
outputs=text_output,
)
# MODEL2
user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
inputs=inputs_list2 + [text_output2],
outputs=text_output2,
)
bot_args2 = dict(fn=bot,
inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
outputs=[text_output2, exception_text],
)
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list2 + [model_state2, my_db_state] + [text_output2],
outputs=[text_output2, exception_text],
)
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list2 + [text_output2],
outputs=text_output2,
)
def clear_instruct():
return gr.Textbox.update(value='')
if kwargs['auto_score']:
score_args_submit = score_args
score_args2_submit = score_args2
else:
score_args_submit = dict(fn=lambda: None, inputs=None, outputs=None)
score_args2_submit = dict(fn=lambda: None, inputs=None, outputs=None)
def deselect_radio_chats():
return gr.update(value=None)
# in case 2nd model, consume instruction first, so can clear quickly
# bot doesn't consume instruction itself, just history from user, so why works
submit_event1a = instruction.submit(**user_args, queue=queue,
api_name='instruction' if allow_api else None)
submit_event1b = submit_event1a.then(**user_args2, api_name='instruction2' if allow_api else None)
submit_event1c = submit_event1b.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput)
submit_event1d = submit_event1c.then(**bot_args, api_name='instruction_bot' if allow_api else None,
queue=queue)
submit_event1d2 = submit_event1d.then(clear_torch_cache)
submit_event1e = submit_event1d2.then(**score_args_submit,
api_name='instruction_bot_score' if allow_api else None,
queue=queue)
submit_event1f = submit_event1e.then(**bot_args2, api_name='instruction_bot2' if allow_api else None,
queue=queue)
submit_event1f2 = submit_event1f.then(clear_torch_cache)
submit_event1g = submit_event1f2.then(**score_args2_submit,
api_name='instruction_bot_score2' if allow_api else None, queue=queue)
submit_event1h = submit_event1g.then(clear_torch_cache)
# if hit enter on new instruction for submitting new query, no longer the saved chat
submit_event1i = submit_event1h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
submit_event2a = submit.click(**user_args, api_name='submit' if allow_api else None)
submit_event2b = submit_event2a.then(**user_args2, api_name='submit2' if allow_api else None)
submit_event2c = submit_event2b.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput)
submit_event2d = submit_event2c.then(**bot_args, api_name='submit_bot' if allow_api else None, queue=queue)
submit_event2d2 = submit_event2d.then(clear_torch_cache)
submit_event2e = submit_event2d2.then(**score_args_submit, api_name='submit_bot_score' if allow_api else None,
queue=queue)
submit_event2f = submit_event2e.then(**bot_args2, api_name='submit_bot2' if allow_api else None, queue=queue)
submit_event2f2 = submit_event2f.then(clear_torch_cache)
submit_event2g = submit_event2f2.then(**score_args2_submit, api_name='submit_bot_score2' if allow_api else None,
queue=queue)
submit_event2h = submit_event2g.then(clear_torch_cache)
# if submit new query, no longer the saved chat
submit_event2i = submit_event2h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
submit_event3a = retry.click(**user_args, api_name='retry' if allow_api else None)
submit_event3b = submit_event3a.then(**user_args2, api_name='retry2' if allow_api else None)
submit_event3c = submit_event3b.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput)
submit_event3d = submit_event3c.then(**retry_bot_args, api_name='retry_bot' if allow_api else None,
queue=queue)
submit_event3d2 = submit_event3d.then(clear_torch_cache)
submit_event3e = submit_event3d2.then(**score_args_submit, api_name='retry_bot_score' if allow_api else None,
queue=queue)
submit_event3f = submit_event3e.then(**retry_bot_args2, api_name='retry_bot2' if allow_api else None,
queue=queue)
submit_event3f2 = submit_event3f.then(clear_torch_cache)
submit_event3g = submit_event3f2.then(**score_args2_submit, api_name='retry_bot_score2' if allow_api else None,
queue=queue)
submit_event3h = submit_event3g.then(clear_torch_cache)
# if retry, no longer the saved chat
submit_event3i = submit_event3h.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
# if undo, no longer the saved chat
submit_event4 = undo.click(**undo_user_args, api_name='undo' if allow_api else None) \
.then(**undo_user_args2, api_name='undo2' if allow_api else None) \
.then(clear_instruct, None, instruction) \
.then(clear_instruct, None, iinput) \
.then(**score_args_submit, api_name='undo_score' if allow_api else None) \
.then(**score_args2_submit, api_name='undo_score2' if allow_api else None) \
.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False) \
.then(clear_torch_cache)
# MANAGE CHATS
def dedup(short_chat, short_chats):
if short_chat not in short_chats:
return short_chat
for i in range(1, 1000):
short_chat_try = short_chat + "_" + str(i)
if short_chat_try not in short_chats:
return short_chat_try
# fallback and hope for best
short_chat = short_chat + "_" + str(random.random())
return short_chat
def get_short_chat(x, short_chats, short_len=20, words=4):
if x and len(x[0]) == 2 and x[0][0] is not None:
short_chat = ' '.join(x[0][0][:short_len].split(' ')[:words]).strip()
short_chat = dedup(short_chat, short_chats)
else:
short_chat = None
return short_chat
def is_chat_same(x, y):
# <p> etc. added in chat, try to remove some of that to help avoid dup entries when hit new conversation
is_same = True
# length of conversation has to be same
if len(x) != len(y):
return False
for stepx, stepy in zip(x, y):
if len(stepx) != len(stepy):
# something off with a conversation
return False
if len(stepx) != 2:
# something off
return False
if len(stepy) != 2:
# something off
return False
questionx = stepx[0].replace('<p>', '').replace('</p>', '') if stepx[0] is not None else None
answerx = stepx[1].replace('<p>', '').replace('</p>', '') if stepx[1] is not None else None
questiony = stepy[0].replace('<p>', '').replace('</p>', '') if stepy[0] is not None else None
answery = stepy[1].replace('<p>', '').replace('</p>', '') if stepy[1] is not None else None
if questionx != questiony or answerx != answery:
return False
return is_same
def save_chat(chat1, chat2, chat_state1):
short_chats = list(chat_state1.keys())
for chati in [chat1, chat2]:
if chati and len(chati) > 0 and len(chati[0]) == 2 and chati[0][1] is not None:
short_chat = get_short_chat(chati, short_chats)
if short_chat:
already_exists = any([is_chat_same(chati, x) for x in chat_state1.values()])
if not already_exists:
chat_state1[short_chat] = chati
return chat_state1
def update_radio_chats(chat_state1):
return gr.update(choices=list(chat_state1.keys()), value=None)
def switch_chat(chat_key, chat_state1):
chosen_chat = chat_state1[chat_key]
return chosen_chat, chosen_chat
radio_chats.input(switch_chat, inputs=[radio_chats, chat_state], outputs=[text_output, text_output2])
def remove_chat(chat_key, chat_state1):
chat_state1.pop(chat_key, None)
return chat_state1
remove_chat_btn.click(remove_chat, inputs=[radio_chats, chat_state], outputs=chat_state) \
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats)
def get_chats1(chat_state1):
base = 'chats'
makedirs(base, exist_ok=True)
filename = os.path.join(base, 'chats_%s.json' % str(uuid.uuid4()))
with open(filename, "wt") as f:
f.write(json.dumps(chat_state1, indent=2))
return filename
export_chats_btn.click(get_chats1, inputs=chat_state, outputs=chats_file, queue=False,
api_name='export_chats' if allow_api else None)
def add_chats_from_file(file, chat_state1, add_btn):
if not file:
return chat_state1, add_btn
if isinstance(file, str):
files = [file]
else:
files = file
if not files:
return chat_state1, add_btn
for file1 in files:
try:
if hasattr(file1, 'name'):
file1 = file1.name
with open(file1, "rt") as f:
new_chats = json.loads(f.read())
for chat1_k, chat1_v in new_chats.items():
# ignore chat1_k, regenerate and de-dup to avoid loss
chat_state1 = save_chat(chat1_v, None, chat_state1)
except BaseException as e:
print("Add chats exception: %s" % str(e), flush=True)
return chat_state1, add_btn
# note for update_user_db_func output is ignored for db
add_to_chats_btn.click(add_chats_from_file,
inputs=[chatsup_output, chat_state, add_to_chats_btn],
outputs=[chat_state, add_to_my_db_btn], queue=False,
api_name='add_to_chats' if allow_api else None) \
.then(clear_file_list, outputs=chatsup_output, queue=False) \
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats, queue=False)
clear_chat_btn.click(lambda: None, None, text_output, queue=False, api_name='clear' if allow_api else None) \
.then(lambda: None, None, text_output2, queue=False, api_name='clear2' if allow_api else None) \
.then(deselect_radio_chats, inputs=None, outputs=radio_chats, queue=False)
# does both models
clear.click(save_chat, inputs=[text_output, text_output2, chat_state], outputs=chat_state,
api_name='save_chat' if allow_api else None) \
.then(update_radio_chats, inputs=chat_state, outputs=radio_chats,
api_name='update_chats' if allow_api else None) \
.then(lambda: None, None, text_output, queue=False, api_name='clearB' if allow_api else None) \
.then(lambda: None, None, text_output2, queue=False, api_name='clearB2' if allow_api else None)
# NOTE: clear of instruction/iinput for nochat has to come after score,
# because score for nochat consumes actual textbox, while chat consumes chat history filled by user()
no_chat_args = dict(fn=fun,
inputs=[model_state, my_db_state] + inputs_list,
outputs=text_output_nochat,
queue=queue,
)
submit_event_nochat = submit_nochat.click(**no_chat_args, api_name='submit_nochat' if allow_api else None) \
.then(clear_torch_cache) \
.then(**score_args_nochat, api_name='instruction_bot_score_nochat' if allow_api else None, queue=queue) \
.then(clear_instruct, None, instruction_nochat) \
.then(clear_instruct, None, iinput_nochat) \
.then(clear_torch_cache)
# copy of above with text box submission
submit_event_nochat2 = instruction_nochat.submit(**no_chat_args) \
.then(clear_torch_cache) \
.then(**score_args_nochat, queue=queue) \
.then(clear_instruct, None, instruction_nochat) \
.then(clear_instruct, None, iinput_nochat) \
.then(clear_torch_cache)
submit_event_nochat_api = submit_nochat_api.click(fun_with_dict_str,
inputs=[model_state, my_db_state, inputs_dict_str],
outputs=text_output_nochat_api,
queue=True, # required for generator
api_name='submit_nochat_api' if allow_api else None) \
.then(clear_torch_cache)
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
# ensure old model removed from GPU memory
if kwargs['debug']:
print("Pre-switch pre-del GPU memory: %s" % get_torch_allocated(), flush=True)
model0 = model_state0[0]
if isinstance(model_state_old[0], str) and model0 is not None:
# best can do, move model loaded at first to CPU
model0.cpu()
if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
try:
model_state_old[0].cpu()
except Exception as e:
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
print("Unable to put model on CPU: %s" % str(e), flush=True)
del model_state_old[0]
model_state_old[0] = None
if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
del model_state_old[1]
model_state_old[1] = None
clear_torch_cache()
if kwargs['debug']:
print("Pre-switch post-del GPU memory: %s" % get_torch_allocated(), flush=True)
if model_name is None or model_name == no_model_str:
# no-op if no model, just free memory
# no detranscribe needed for model, never go into evaluate
lora_weights = no_lora_str
return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
# don't deepcopy, can contain model itself
all_kwargs1 = all_kwargs.copy()
all_kwargs1['base_model'] = model_name.strip()
all_kwargs1['load_8bit'] = load_8bit
all_kwargs1['infer_devices'] = infer_devices
all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
model_lower = model_name.strip().lower()
if model_lower in inv_prompt_type_to_model_lower:
prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
else:
prompt_type1 = prompt_type_old
# detranscribe
if lora_weights == no_lora_str:
lora_weights = ''
all_kwargs1['lora_weights'] = lora_weights.strip()
model1, tokenizer1, device1 = get_model(reward_type=False,
**get_kwargs(get_model, exclude_names=['reward_type'],
**all_kwargs1))
clear_torch_cache()
model_state_new = [model1, tokenizer1, device1, model_name]
max_max_new_tokens1 = get_max_max_new_tokens(model_state_new, **kwargs)
if kwargs['debug']:
print("Post-switch GPU memory: %s" % get_torch_allocated(), flush=True)
return model_state_new, model_name, lora_weights, prompt_type1, \
gr.Slider.update(maximum=max_max_new_tokens1), \
gr.Slider.update(maximum=max_max_new_tokens1)
def get_prompt_str(prompt_type1, prompt_dict1):
prompt_dict1, prompt_dict_error = get_prompt(prompt_type1, prompt_dict1, chat=False, context='',
reduced=False, return_dict=True)
if prompt_dict_error:
return str(prompt_dict_error)
else:
# return so user can manipulate if want and use as custom
return str(prompt_dict1)
prompt_type.change(fn=get_prompt_str, inputs=[prompt_type, prompt_dict], outputs=prompt_dict)
prompt_type2.change(fn=get_prompt_str, inputs=[prompt_type2, prompt_dict2], outputs=prompt_dict2)
def dropdown_prompt_type_list(x):
return gr.Dropdown.update(value=x)
def chatbot_list(x, model_used_in):
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
load_model_args = dict(fn=load_model,
inputs=[model_choice, lora_choice, model_state, prompt_type,
model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
outputs=[model_state, model_used, lora_used,
# if prompt_type changes, prompt_dict will change via change rule
prompt_type, max_new_tokens, min_new_tokens,
])
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
nochat_update_args = dict(fn=chatbot_list, inputs=[text_output_nochat, model_used], outputs=text_output_nochat)
if not is_public:
load_model_event = load_model_button.click(**load_model_args, api_name='load_model' if allow_api else None) \
.then(**prompt_update_args) \
.then(**chatbot_update_args) \
.then(**nochat_update_args) \
.then(clear_torch_cache)
load_model_args2 = dict(fn=load_model,
inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
outputs=[model_state2, model_used2, lora_used2,
# if prompt_type2 changes, prompt_dict2 will change via change rule
prompt_type2, max_new_tokens2, min_new_tokens2
])
prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
if not is_public:
load_model_event2 = load_model_button2.click(**load_model_args2,
api_name='load_model2' if allow_api else None) \
.then(**prompt_update_args2) \
.then(**chatbot_update_args2) \
.then(clear_torch_cache)
def dropdown_model_list(list0, x):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
return gr.Dropdown.update(value=x, choices=new_options), \
gr.Dropdown.update(value=x, choices=new_options), \
'', new_state
add_model_event = add_model_button.click(fn=dropdown_model_list,
inputs=[model_options_state, new_model],
outputs=[model_choice, model_choice2, new_model, model_options_state],
queue=False)
def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
# don't switch drop-down to added lora if already have model loaded
x1 = x if model_used1 == no_model_str else lora_used1
x2 = x if model_used2 == no_model_str else lora_used2
return gr.Dropdown.update(value=x1, choices=new_options), \
gr.Dropdown.update(value=x2, choices=new_options), \
'', new_state
add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2,
lora_used2],
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state],
queue=False)
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go" if allow_api else None, queue=False) \
.then(lambda: gr.update(visible=True), None, normal_block, queue=False) \
.then(**load_model_args, queue=False).then(**prompt_update_args, queue=False)
def compare_textbox_fun(x):
return gr.Textbox.update(visible=x)
def compare_column_fun(x):
return gr.Column.update(visible=x)
def compare_prompt_fun(x):
return gr.Dropdown.update(visible=x)
def slider_fun(x):
return gr.Slider.update(visible=x)
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2,
api_name="compare_checkbox" if allow_api else None) \
.then(compare_column_fun, compare_checkbox, col_model2) \
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
.then(compare_textbox_fun, compare_checkbox, score_text2) \
.then(slider_fun, compare_checkbox, max_new_tokens2) \
.then(slider_fun, compare_checkbox, min_new_tokens2)
# FIXME: add score_res2 in condition, but do better
# callback for logging flagged input/output
callback.setup(inputs_list + [text_output, text_output2], "flagged_data_points")
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output, text_output2], None,
preprocess=False,
api_name='flag' if allow_api else None, queue=False)
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output_nochat], None,
preprocess=False,
api_name='flag_nochat' if allow_api else None, queue=False)
def get_system_info():
return gr.Textbox.update(value=system_info_print())
system_event = system_btn.click(get_system_info, outputs=system_text,
api_name='system_info' if allow_api else None, queue=False)
# don't pass text_output, don't want to clear output, just stop it
# cancel only stops outer generation, not inner generation or non-generation
stop_btn.click(lambda: None, None, None,
cancels=[submit_event1d, submit_event1f,
submit_event2d, submit_event2f,
submit_event3d, submit_event3f,
submit_event_nochat,
submit_event_nochat2,
],
queue=False, api_name='stop' if allow_api else None).then(clear_torch_cache, queue=False)
def count_chat_tokens(model_state1, chat1, prompt_type1, prompt_dict1):
if model_state1 and not isinstance(model_state1[1], str):
tokenizer = model_state1[1]
elif model_state0 and not isinstance(model_state0[1], str):
tokenizer = model_state0[1]
else:
tokenizer = None
if tokenizer is not None:
langchain_mode1 = 'ChatLLM'
# fake user message to mimic bot()
chat1 = copy.deepcopy(chat1)
chat1 = chat1 + [['user_message1', None]]
model_max_length1 = tokenizer.model_max_length
context1 = history_to_context(chat1, langchain_mode1, prompt_type1, prompt_dict1, chat1,
model_max_length1)
return str(tokenizer(context1, return_tensors="pt")['input_ids'].shape[1])
else:
return "N/A"
count_chat_tokens_btn.click(fn=count_chat_tokens, inputs=[model_state, text_output, prompt_type, prompt_dict],
outputs=chat_token_count, api_name='count_tokens' if allow_api else None)
demo.load(None, None, None, _js=get_dark_js() if kwargs['h2ocolors'] else None)
demo.queue(concurrency_count=kwargs['concurrency_count'], api_open=kwargs['api_open'])
favicon_path = "h2o-logo.svg"
scheduler = BackgroundScheduler()
scheduler.add_job(func=clear_torch_cache, trigger="interval", seconds=20)
if is_public and \
kwargs['base_model'] not in non_hf_types:
# FIXME: disable for gptj, langchain or gpt4all modify print itself
# FIXME: and any multi-threaded/async print will enter model output!
scheduler.add_job(func=ping, trigger="interval", seconds=60)
scheduler.start()
# import control
if kwargs['langchain_mode'] == 'Disabled' and \
os.environ.get("TEST_LANGCHAIN_IMPORT") and \
kwargs['base_model'] not in non_hf_types:
assert 'gpt_langchain' not in sys.modules, "Dev bug, import of langchain when should not have"
assert 'langchain' not in sys.modules, "Dev bug, import of langchain when should not have"
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
favicon_path=favicon_path, prevent_thread_lock=True,
auth=kwargs['auth'])
if kwargs['verbose']:
print("Started GUI", flush=True)
if kwargs['block_gradio_exit']:
demo.block_thread()
input_args_list = ['model_state', 'my_db_state']
def get_inputs_list(inputs_dict, model_lower, model_id=1):
"""
map gradio objects in locals() to inputs for evaluate().
:param inputs_dict:
:param model_lower:
:param model_id: Which model (1 or 2) of 2
:return:
"""
inputs_list_names = list(inspect.signature(evaluate).parameters)
inputs_list = []
inputs_dict_out = {}
for k in inputs_list_names:
if k == 'kwargs':
continue
if k in input_args_list + inputs_kwargs_list:
# these are added at use time for args or partial for kwargs, not taken as input
continue
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
continue
if model_id == 2:
if k == 'prompt_type':
k = 'prompt_type2'
if k == 'prompt_used':
k = 'prompt_used2'
if k == 'max_new_tokens':
k = 'max_new_tokens2'
if k == 'min_new_tokens':
k = 'min_new_tokens2'
inputs_list.append(inputs_dict[k])
inputs_dict_out[k] = inputs_dict[k]
return inputs_list, inputs_dict_out
def get_sources(db1, langchain_mode, dbs=None, docs_state0=None):
if langchain_mode in ['ChatLLM', 'LLM']:
source_files_added = "NA"
source_list = []
elif langchain_mode in ['wiki_full']:
source_files_added = "Not showing wiki_full, takes about 20 seconds and makes 4MB file." \
" Ask jon.mckinney@h2o.ai for file if required."
source_list = []
elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None:
db_get = db1[0].get()
source_list = sorted(set([x['source'] for x in db_get['metadatas']]))
source_files_added = '\n'.join(source_list)
elif langchain_mode in dbs and dbs[langchain_mode] is not None:
db1 = dbs[langchain_mode]
db_get = db1.get()
source_list = sorted(set([x['source'] for x in db_get['metadatas']]))
source_files_added = '\n'.join(source_list)
else:
source_list = []
source_files_added = "None"
sources_file = 'sources_%s_%s' % (langchain_mode, str(uuid.uuid4()))
with open(sources_file, "wt") as f:
f.write(source_files_added)
source_list = docs_state0 + source_list
return sources_file, source_list
def update_user_db(file, db1, x, y, *args, dbs=None, langchain_mode='UserData', **kwargs):
try:
return _update_user_db(file, db1, x, y, *args, dbs=dbs, langchain_mode=langchain_mode, **kwargs)
except BaseException as e:
print(traceback.format_exc(), flush=True)
# gradio has issues if except, so fail semi-gracefully, else would hang forever in processing textbox
ex_str = "Exception: %s" % str(e)
source_files_added = """\
<html>
<body>
<p>
Sources: <br>
</p>
<div style="overflow-y: auto;height:400px">
{0}
</div>
</body>
</html>
""".format(ex_str)
if langchain_mode == 'MyData':
return db1, x, y, source_files_added
else:
return x, y, source_files_added
finally:
clear_torch_cache()
def _update_user_db(file, db1, x, y, chunk, chunk_size, dbs=None, db_type=None, langchain_mode='UserData',
use_openai_embedding=None,
hf_embedding_model=None,
caption_loader=None,
enable_captions=None,
captions_model=None,
enable_ocr=None,
verbose=None,
is_url=None, is_txt=None):
assert use_openai_embedding is not None
assert hf_embedding_model is not None
assert caption_loader is not None
assert enable_captions is not None
assert captions_model is not None
assert enable_ocr is not None
assert verbose is not None
assert isinstance(dbs, dict), "Wrong type for dbs: %s" % str(type(dbs))
assert db_type in ['faiss', 'chroma'], "db_type %s not supported" % db_type
from gpt_langchain import add_to_db, get_db, path_to_docs
# handle case of list of temp buffer
if isinstance(file, list) and len(file) > 0 and hasattr(file[0], 'name'):
file = [x.name for x in file]
# handle single file of temp buffer
if hasattr(file, 'name'):
file = file.name
if verbose:
print("Adding %s" % file, flush=True)
sources = path_to_docs(file if not is_url and not is_txt else None,
verbose=verbose,
chunk=chunk, chunk_size=chunk_size,
url=file if is_url else None,
text=file if is_txt else None,
enable_captions=enable_captions,
captions_model=captions_model,
enable_ocr=enable_ocr,
caption_loader=caption_loader,
)
exceptions = [x for x in sources if x.metadata.get('exception')]
sources = [x for x in sources if 'exception' not in x.metadata]
with filelock.FileLock("db_%s.lock" % langchain_mode.replace(' ', '_')):
if langchain_mode == 'MyData':
if db1[0] is not None:
# then add
db, num_new_sources, new_sources_metadata = add_to_db(db1[0], sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
else:
assert len(db1) == 2 and db1[1] is None, "Bad MyData db: %s" % db1
# then create
# assign fresh hash for this user session, so not shared
# if added has to original state and didn't change, then would be shared db for all users
db1[1] = str(uuid.uuid4())
persist_directory = os.path.join(scratch_base_dir, 'db_dir_%s_%s' % (langchain_mode, db1[1]))
db = get_db(sources, use_openai_embedding=use_openai_embedding,
db_type=db_type,
persist_directory=persist_directory,
langchain_mode=langchain_mode,
hf_embedding_model=hf_embedding_model)
if db is None:
db1[1] = None
else:
db1[0] = db
source_files_added = get_source_files(db=db1[0], exceptions=exceptions)
return db1, x, y, source_files_added
else:
from gpt_langchain import get_persist_directory
persist_directory = get_persist_directory(langchain_mode)
if langchain_mode in dbs and dbs[langchain_mode] is not None:
# then add
db, num_new_sources, new_sources_metadata = add_to_db(dbs[langchain_mode], sources, db_type=db_type,
use_openai_embedding=use_openai_embedding,
hf_embedding_model=hf_embedding_model)
else:
# then create
db = get_db(sources, use_openai_embedding=use_openai_embedding,
db_type=db_type,
persist_directory=persist_directory,
langchain_mode=langchain_mode,
hf_embedding_model=hf_embedding_model)
dbs[langchain_mode] = db
# NOTE we do not return db, because function call always same code path
# return dbs[langchain_mode], x, y
# db in this code path is updated in place
source_files_added = get_source_files(db=dbs[langchain_mode], exceptions=exceptions)
return x, y, source_files_added
def get_db(db1, langchain_mode, dbs=None):
with filelock.FileLock("db_%s.lock" % langchain_mode.replace(' ', '_')):
if langchain_mode in ['wiki_full']:
# NOTE: avoid showing full wiki. Takes about 30 seconds over about 90k entries, but not useful for now
db = None
elif langchain_mode == 'MyData' and len(db1) > 0 and db1[0] is not None:
db = db1[0]
elif langchain_mode in dbs and dbs[langchain_mode] is not None:
db = dbs[langchain_mode]
else:
db = None
return db
def get_source_files_given_langchain_mode(db1, langchain_mode='UserData', dbs=None):
db = get_db(db1, langchain_mode, dbs=dbs)
if langchain_mode in ['ChatLLM', 'LLM'] or db is None:
return "Sources: N/A"
return get_source_files(db=db, exceptions=None)
def get_source_files(db=None, exceptions=None, metadatas=None):
if exceptions is None:
exceptions = []
# only should be one source, not confused
assert db is not None or metadatas is not None
if metadatas is None:
source_label = "Sources:"
if db is not None:
metadatas = db.get()['metadatas']
else:
metadatas = []
adding_new = False
else:
source_label = "New Sources:"
adding_new = True
# below automatically de-dups
from gpt_langchain import get_url
small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('head')) for x in
metadatas}
# if small_dict is empty dict, that's ok
df = pd.DataFrame(small_dict.items(), columns=['source', 'head'])
df.index = df.index + 1
df.index.name = 'index'
source_files_added = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')
if exceptions:
exception_metadatas = [x.metadata for x in exceptions]
small_dict = {get_url(x['source'], from_str=True, short_name=True): get_short_name(x.get('exception')) for x in
exception_metadatas}
# if small_dict is empty dict, that's ok
df = pd.DataFrame(small_dict.items(), columns=['source', 'exception'])
df.index = df.index + 1
df.index.name = 'index'
exceptions_html = tabulate.tabulate(df, headers='keys', tablefmt='unsafehtml')
else:
exceptions_html = ''
if metadatas and exceptions:
source_files_added = """\
<html>
<body>
<p>
{0} <br>
</p>
<div style="overflow-y: auto;height:400px">
{1}
{2}
</div>
</body>
</html>
""".format(source_label, source_files_added, exceptions_html)
elif metadatas:
source_files_added = """\
<html>
<body>
<p>
{0} <br>
</p>
<div style="overflow-y: auto;height:400px">
{1}
</div>
</body>
</html>
""".format(source_label, source_files_added)
elif exceptions_html:
source_files_added = """\
<html>
<body>
<p>
Exceptions: <br>
</p>
<div style="overflow-y: auto;height:400px">
{0}
</div>
</body>
</html>
""".format(exceptions_html)
else:
if adding_new:
source_files_added = "No New Sources"
else:
source_files_added = "No Sources"
return source_files_added
def update_and_get_source_files_given_langchain_mode(db1, langchain_mode, dbs=None, first_para=None,
text_limit=None, chunk=None, chunk_size=None,
user_path=None, db_type=None, load_db_if_exists=None,
n_jobs=None, verbose=None):
db = get_db(db1, langchain_mode, dbs=dbs)
from gpt_langchain import make_db
db, num_new_sources, new_sources_metadata = make_db(use_openai_embedding=False,
hf_embedding_model="sentence-transformers/all-MiniLM-L6-v2",
first_para=first_para, text_limit=text_limit,
chunk=chunk,
chunk_size=chunk_size,
langchain_mode=langchain_mode,
user_path=user_path,
db_type=db_type,
load_db_if_exists=load_db_if_exists,
db=db,
n_jobs=n_jobs,
verbose=verbose)
# return only new sources with text saying such
return get_source_files(db=None, exceptions=None, metadatas=new_sources_metadata)
|