Spaces:
Runtime error
Runtime error
File size: 4,491 Bytes
efe0924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import traceback
from queue import Queue
from threading import Thread
import collections.abc
import torch
from transformers import StoppingCriteria
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops=[], encounters=[]):
super().__init__()
assert len(stops) % len(encounters) == 0, "Number of stops and encounters must match"
self.encounters = encounters
self.stops = [stop.to("cuda") for stop in stops]
self.num_stops = [0] * len(stops)
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
for stopi, stop in enumerate(self.stops):
if torch.all((stop == input_ids[0][-len(stop):])).item():
self.num_stops[stopi] += 1
if self.num_stops[stopi] >= self.encounters[stopi % len(self.encounters)]:
return True
# print("Tokens: %s" % input_ids[0].cpu().numpy(), flush=True)
# print("Stop Tokens: %s" % [x.cpu().numpy() for x in self.stops], flush=True)
return False
class Stream(StoppingCriteria):
"""
This class can be used to callback during generation. Keep
in mind for decoder-only type of transformers, this will include the initial prompted tokens.
Args:
func (`callable`):
A callable function to apply on first input in list every iteration of generation
"""
def __init__(self, func=None):
self.func = func
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
if self.func is not None:
# only consume first of multiple responses
self.func(input_ids[0])
return False
class CallbackToGenerator(collections.abc.Generator):
"""
A generator wrapper for a function that invokes a callback multiple times.
Calling `send` on the generator emits a value from one callback, and returns
the next.
Note this starts a background thread
"""
def __init__(self, func, *args, callback=None, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
self.callback = callback
self._ready_queue = Queue(1)
self._done_queue = Queue(1)
self._done_holder = [False]
# local to avoid reference cycles
ready_queue = self._ready_queue
done_queue = self._done_queue
done_holder = self._done_holder
def val_callback(value):
done_queue.put((False, value))
cmd, val = ready_queue.get()
if cmd == 'send':
return val
elif cmd == 'throw':
raise val
else:
assert False # pragma: no cover
def thread_func():
while True:
cmd, val = ready_queue.get()
if cmd == 'send' and val is not None:
done_queue.put((True, TypeError("can't send non-None value to a just-started generator")))
continue
break
try:
if cmd == 'throw':
raise val
ret = func(callback=val_callback, **self.kwargs)
raise StopIteration(ret) if ret is not None else StopIteration
except BaseException as e:
done_holder[0] = True
done_queue.put((True, e))
self._thread = Thread(target=thread_func)
self._thread.start()
def _put(self, *args):
if self._done_holder[0]:
raise StopIteration
self._ready_queue.put(args)
is_exception, val = self._done_queue.get()
if is_exception:
try:
raise val
finally:
# prevent val's traceback containing a reference cycle
del val
else:
return val
def send(self, value):
return self._put('send', value)
def throw(self, exc):
return self._put('throw', exc)
def close(self):
try:
self.throw(GeneratorExit)
except StopIteration:
self._thread.join()
except GeneratorExit:
self._thread.join()
except BaseException:
self._thread.join()
raise
else:
# yielded again, can't clean up the thread
raise RuntimeError('Task with callback ignored GeneratorExit')
def __del__(self):
self.close()
|