File size: 30,102 Bytes
d0a7bb3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import json

import inspect
from typing import Any, Callable, Dict, List, Optional, Tuple, Union

import torch
from transformers import CLIPTextModel, CLIPTokenizer

from diffusers.loaders import FromSingleFileMixin

from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    logging,
)
from diffusers.utils.torch_utils import randn_tensor
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.pipeline_utils import *
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
from diffusers.models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT

from diffusers_patch.models.unet_2d_condition_woct import UNet2DConditionWoCTModel

from diffusers_patch.pipelines.oms.utils import SDXLTextEncoder, SDXLTokenizer


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def load_sub_model_oms(
    library_name: str,
    class_name: str,
    importable_classes: List[Any],
    pipelines: Any,
    is_pipeline_module: bool,
    pipeline_class: Any,
    torch_dtype: torch.dtype,
    provider: Any,
    sess_options: Any,
    device_map: Optional[Union[Dict[str, torch.device], str]],
    max_memory: Optional[Dict[Union[int, str], Union[int, str]]],
    offload_folder: Optional[Union[str, os.PathLike]],
    offload_state_dict: bool,
    model_variants: Dict[str, str],
    name: str,
    from_flax: bool,
    variant: str,
    low_cpu_mem_usage: bool,
    cached_folder: Union[str, os.PathLike],
):
    """Helper method to load the module `name` from `library_name` and `class_name`"""
    # retrieve class candidates
    class_obj, class_candidates = get_class_obj_and_candidates(
        library_name,
        class_name,
        importable_classes,
        pipelines,
        is_pipeline_module,
        component_name=name,
        cache_dir=cached_folder,
    )

    load_method_name = None
    # retrive load method name
    for class_name, class_candidate in class_candidates.items():
        if class_candidate is not None and issubclass(class_obj, class_candidate):
            load_method_name = importable_classes[class_name][1]

    # if load method name is None, then we have a dummy module -> raise Error
    if load_method_name is None:
        none_module = class_obj.__module__
        is_dummy_path = none_module.startswith(DUMMY_MODULES_FOLDER) or none_module.startswith(
            TRANSFORMERS_DUMMY_MODULES_FOLDER
        )
        if is_dummy_path and "dummy" in none_module:
            # call class_obj for nice error message of missing requirements
            class_obj()

        raise ValueError(
            f"The component {class_obj} of {pipeline_class} cannot be loaded as it does not seem to have"
            f" any of the loading methods defined in {ALL_IMPORTABLE_CLASSES}."
        )

    load_method = getattr(class_obj, load_method_name)

    # add kwargs to loading method
    import diffusers
    loading_kwargs = {}
    if issubclass(class_obj, torch.nn.Module):
        loading_kwargs["torch_dtype"] = torch_dtype
    if issubclass(class_obj, diffusers.OnnxRuntimeModel):
        loading_kwargs["provider"] = provider
        loading_kwargs["sess_options"] = sess_options

    is_diffusers_model = issubclass(class_obj, diffusers.ModelMixin)

    if is_transformers_available():
        transformers_version = version.parse(version.parse(transformers.__version__).base_version)
    else:
        transformers_version = "N/A"

    is_transformers_model = (
        is_transformers_available()
        and issubclass(class_obj, PreTrainedModel)
        and transformers_version >= version.parse("4.20.0")
    )

    # When loading a transformers model, if the device_map is None, the weights will be initialized as opposed to diffusers.
    # To make default loading faster we set the `low_cpu_mem_usage=low_cpu_mem_usage` flag which is `True` by default.
    # This makes sure that the weights won't be initialized which significantly speeds up loading.
    if is_diffusers_model or is_transformers_model:
        loading_kwargs["device_map"] = device_map
        loading_kwargs["max_memory"] = max_memory
        loading_kwargs["offload_folder"] = offload_folder
        loading_kwargs["offload_state_dict"] = offload_state_dict
        loading_kwargs["variant"] = model_variants.pop(name, None)
        if from_flax:
            loading_kwargs["from_flax"] = True

        # the following can be deleted once the minimum required `transformers` version
        # is higher than 4.27
        if (
            is_transformers_model
            and loading_kwargs["variant"] is not None
            and transformers_version < version.parse("4.27.0")
        ):
            raise ImportError(
                f"When passing `variant='{variant}'`, please make sure to upgrade your `transformers` version to at least 4.27.0.dev0"
            )
        elif is_transformers_model and loading_kwargs["variant"] is None:
            loading_kwargs.pop("variant")

        # if `from_flax` and model is transformer model, can currently not load with `low_cpu_mem_usage`
        if not (from_flax and is_transformers_model):
            loading_kwargs["low_cpu_mem_usage"] = low_cpu_mem_usage
        else:
            loading_kwargs["low_cpu_mem_usage"] = False
    # check if oms directory
    if 'oms' in name:
        config_name = os.path.join(cached_folder, name, 'config.json')
        with open(config_name, "r", encoding="utf-8") as f:
            index = json.load(f)
        file_path_or_name = index['_name_or_path']
        if 'SDXL' in index.get('_class_name', 'CLIP'):
            loaded_sub_model = load_method(file_path_or_name, **loading_kwargs)
        elif 'subfolder' in index.keys():
            loading_kwargs["subfolder"] = index["subfolder"]
            loaded_sub_model = load_method(file_path_or_name, **loading_kwargs)
    else:
        # check if the module is in a subdirectory
        if os.path.isdir(os.path.join(cached_folder, name)):
            loaded_sub_model = load_method(os.path.join(cached_folder, name), **loading_kwargs)
        else:
            # else load from the root directory
            loaded_sub_model = load_method(cached_folder, **loading_kwargs)

    return loaded_sub_model

class OMSPipeline(DiffusionPipeline, FromSingleFileMixin):

    def __init__(
        self,
        oms_module: UNet2DConditionWoCTModel,
        sd_pipeline: DiffusionPipeline,
        oms_text_encoder:Optional[Union[CLIPTextModel, SDXLTextEncoder]],
        oms_tokenizer:Optional[Union[CLIPTokenizer, SDXLTokenizer]],
        sd_scheduler = None
    ):
        # assert sd_pipeline is not None

        if oms_tokenizer is None:
            oms_tokenizer = sd_pipeline.tokenizer
        if oms_text_encoder is None:
            oms_text_encoder = sd_pipeline.text_encoder

        # For OMS with SDXL text encoders 
        if 'SDXL' in oms_text_encoder.__class__.__name__:
            self.is_dual_text_encoder = True
        else:
            self.is_dual_text_encoder = False 

        self.register_modules(
            oms_module=oms_module,
            oms_text_encoder=oms_text_encoder,
            oms_tokenizer=oms_tokenizer,
            sd_pipeline = sd_pipeline
        )

        if sd_scheduler is None:
            self.scheduler = sd_pipeline.scheduler 
        else:
            self.scheduler = sd_scheduler
            sd_pipeline.scheduler = sd_scheduler

        self.vae_scale_factor = 2 ** (len(sd_pipeline.vae.config.block_out_channels) - 1)
        self.default_sample_size = sd_pipeline.unet.config.sample_size

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    def oms_step(self, predict_v, latents, do_classifier_free_guidance_for_oms, oms_guidance_scale, generator, alpha_prod_t_prev):
        if do_classifier_free_guidance_for_oms:
            pred_uncond, pred_text = predict_v.chunk(2)
            predict_v = pred_uncond + oms_guidance_scale * (pred_text - pred_uncond)
        # so fking dirty but keep it for now
        alpha_prod_t = torch.zeros_like(alpha_prod_t_prev)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev
        current_alpha_t = alpha_prod_t / alpha_prod_t_prev
        current_beta_t = 1 - current_alpha_t
        pred_original_sample = (alpha_prod_t**0.5) * latents - (beta_prod_t**0.5) * predict_v
        # pred_original_sample = - predict_v
        pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
        current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
        pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * latents

        pred_prev_sample = pred_prev_sample
        # TODO unit variance but seem dont need it

        device = latents.device
        variance_noise = randn_tensor(
            latents.shape, generator=generator, device=device, dtype=latents.dtype
        )
        variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t 
        variance = torch.clamp(variance, min=1e-20) * variance_noise

        latents = pred_prev_sample + variance
        return latents

    def oms_text_encode(self, prompt, num_images_per_prompt, device):
        max_length = None if self.is_dual_text_encoder else self.oms_tokenizer.model_max_length
        if self.is_dual_text_encoder:
            tokenized_prompts = self.oms_tokenizer(prompt,
                                    padding='max_length',
                                    max_length=max_length,
                                    truncation=True,
                                    return_tensors='pt').input_ids
            tokenized_prompts = torch.stack([tokenized_prompts[0], tokenized_prompts[1]], dim=1)
            text_embeddings, _ = self.oms_text_encoder( [tokenized_prompts[:, 0, :].to(device), tokenized_prompts[:, 1, :].to(device)])  # type: ignore
        elif 'clip' in self.oms_text_encoder.config_class.model_type:
            tokenized_prompts = self.oms_tokenizer(prompt,
                                               padding='max_length',
                                               max_length=max_length,
                                               truncation=True,
                                               return_tensors='pt').input_ids
            text_embeddings = self.oms_text_encoder(tokenized_prompts.to(device))[0]  # type: ignore
        else: # T5
            tokenized_prompts = self.oms_tokenizer(prompt,
                                               padding='max_length',
                                               max_length=max_length,
                                               truncation=True,
                                               add_special_tokens=True,
                                               return_tensors='pt').input_ids
            # Note: t5 text encoder outputs "None" under fp16
            with torch.cuda.amp.autocast(dtype=torch.float32):
                text_embeddings = self.text_encoder(tokenized_prompts.to(device))[0] 

        # duplicate text embeddings for each generation per prompt
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)  # type: ignore
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        return text_embeddings

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        cache_dir = kwargs.pop("cache_dir", DIFFUSERS_CACHE)
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
        local_files_only = kwargs.pop("local_files_only", HF_HUB_OFFLINE)
        use_auth_token = kwargs.pop("use_auth_token", None)
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
        variant = kwargs.pop("variant", None)
        use_safetensors = kwargs.pop("use_safetensors", None)
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)

        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
            cached_folder = cls.download(
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                use_auth_token=use_auth_token,
                revision=revision,
                from_flax=from_flax,
                use_safetensors=use_safetensors,
                custom_pipeline=custom_pipeline,
                custom_revision=custom_revision,
                variant=variant,
                load_connected_pipeline=load_connected_pipeline,
                **kwargs,
            )
        else:
            cached_folder = pretrained_model_name_or_path

        config_dict = cls.load_config(cached_folder)

        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
                if variant_exists:
                    model_variants[folder] = variant

        # 3. Load the pipeline class, if using custom module then load it from the hub
        # if we load from explicit class, let's use it
        pipeline_class = _get_pipeline_class(
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
            cache_dir=cache_dir,
            revision=custom_revision,
        )

        # DEPRECATED: To be removed in 1.0.0
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

        # 5. Throw nice warnings / errors for fast accelerate loading
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

        # 6. Load each module in the pipeline
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name

            # 6.2 Define all importable classes
            is_pipeline_module = hasattr(pipelines, library_name) 
            importable_classes = ALL_IMPORTABLE_CLASSES
            loaded_sub_model = None

            # 6.3 Use passed sub model or load class_name from library_name
            if name in passed_class_obj:
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )

                loaded_sub_model = passed_class_obj[name]
            else:
                # load sub model
                loaded_sub_model = load_sub_model_oms(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
                )
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
                "use_auth_token": use_auth_token,
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
            connected_pipes = {
                prefix: DiffusionPipeline.from_pretrained(repo_id, **load_kwargs.copy())
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

        # 7. Potentially add passed objects if expected
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

        # 8. Instantiate the pipeline
        model = pipeline_class(**init_kwargs)

        # 9. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
        return model

    @torch.no_grad()
    # @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        oms_prompt: Union[str, List[str]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 50,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        oms_guidance_scale: float = 1.0,
        oms_flag: bool = True,
        **kwargs,
    ):
        """Pseudo-doc for OMS"""

        if oms_flag is True:
            if oms_prompt is not None:
                sd_prompt = prompt
                prompt = oms_prompt

            if prompt is not None and isinstance(prompt, str):
                batch_size = 1
            elif prompt is not None and isinstance(prompt, list):
                batch_size = len(prompt)


            height = height or self.default_sample_size * self.vae_scale_factor
            width = width or self.default_sample_size * self.vae_scale_factor
            device = self._execution_device
            ## Guidance flag for OMS
            if oms_guidance_scale is not None:
                do_classifier_free_guidance_for_oms = True
            else:
                do_classifier_free_guidance_for_oms = False


            oms_prompt_emb = self.oms_text_encode(prompt,num_images_per_prompt,device)
            if do_classifier_free_guidance_for_oms:
                oms_negative_prompt = ([''] * (batch_size // num_images_per_prompt))
                oms_negative_prompt_emb = self.oms_text_encode(oms_negative_prompt,num_images_per_prompt,device)

            # 4. Prepare timesteps
            self.scheduler.set_timesteps(num_inference_steps, device=device)

            timesteps = self.scheduler.timesteps

            # 5. Prepare latent variables
            num_channels_latents = self.oms_module.config.in_channels
            latents = self.prepare_latents(
                batch_size * num_images_per_prompt,
                num_channels_latents,
                height,
                width,
                oms_prompt_emb.dtype,
                device,
                generator,
                latents=None,
            )

            ## OMS CFG
            if do_classifier_free_guidance_for_oms:
                oms_prompt_emb = torch.cat([oms_negative_prompt_emb, oms_prompt_emb], dim=0)

        
            ## OMS to device
            oms_prompt_emb = oms_prompt_emb.to(device)


            ## Perform OMS
            alphas_cumprod = self.scheduler.alphas_cumprod.to(device)
            alpha_prod_t_prev =  alphas_cumprod[int(timesteps[0].item())] 
            latent_input_oms = torch.cat([latents] * 2) if do_classifier_free_guidance_for_oms else latents
            v_pred_oms = self.oms_module(latent_input_oms, oms_prompt_emb)['sample']
            latents = self.oms_step(v_pred_oms, latents, do_classifier_free_guidance_for_oms, oms_guidance_scale, generator, alpha_prod_t_prev)
            

            if oms_prompt is not None:
                prompt = sd_prompt

            print('OMS Completed')
        else:
            print("OMS unloaded")
            latents = None
        output = self.sd_pipeline(
                prompt = prompt,
                height = height,
                width = width,
                num_inference_steps = num_inference_steps,
                num_images_per_prompt = num_images_per_prompt,
                generator = generator,
                latents = latents,
                **kwargs
                )

        return output