File size: 15,135 Bytes
37f8ced
 
 
 
 
 
 
 
 
94c2073
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37f8ced
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
---
license: mit
title: TCD
sdk: gradio
emoji: πŸ“ˆ
colorFrom: red
colorTo: green
short_description: Official Demo Space for Trajectory Consistency Distillation
---
# Trajectory Consistency Distillation


Official Repository of the paper: [Trajectory Consistency Distillation]()

![](./assets/teaser_fig.png)

## πŸ“£ News
- (πŸ”₯New) 2024/2/29 We provided a demo of TCD on πŸ€— Hugging Face Space. Try it out [here](https://huggingface.co/spaces/h1t/TCD-SDXL-LoRA).
- (πŸ”₯New) 2024/2/29 We released our model [TCD-SDXL-Lora](https://huggingface.co/h1t/TCD-SDXL-LoRA) in πŸ€— Hugging Face.
- (πŸ”₯New) 2024/2/29 TCD is now integrated into the 🧨 Diffusers library. Please refer to the [Usage](#usage-anchor) for more information.

## Introduction

TCD, inspired by [Consistency Models](https://arxiv.org/abs/2303.01469), is a novel distillation technology that enables the distillation of knowledge from pre-trained diffusion models into a few-step sampler. In this repository, we release the inference code and our model named TCD-SDXL, which is distilled from [SDXL Base 1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0). We provide the LoRA checkpoint in this πŸ”₯[repository](https://huggingface.co/h1t/TCD-SDXL-LoRA).

⭐ TCD has following advantages:

- `High-Quality with Few-Step`: TCD significantly surpasses the previous state-of-the-art few-step text-to-image model [LCM](https://github.com/luosiallen/latent-consistency-model/tree/main) in terms of image quality. Notably, LCM experiences a notable decline in quality at high NFEs. In contrast, _**TCD maintains superior generative quality at high NFEs, even exceeding the performance of DPM-Solver++(2S) with origin SDXL**_. 
![](./assets/teaser.jpeg)
<!-- We observed that the images generated with 8 steps by TCD-SDXL are already highly impressive, even outperforming the original SDXL 50-steps generation results. -->
- `Versatility`: Integrated with LoRA technology, TCD can be directly applied to various models (including the custom Community Models, styled LoRA, ControlNet, IP-Adapter) that share the same backbone, as demonstrated in the [Usage](#usage-anchor).
![](./assets/versatility.png)
- `Avoiding Mode Collapse`: TCD achieves few-step generation without the need for adversarial training, thus circumventing mode collapse caused by the GAN objective. 
In contrast to the concurrent work [SDXL-Lightning](https://huggingface.co/ByteDance/SDXL-Lightning), which relies on Adversarial Diffusion Distillation, TCD can synthesize results that are more realistic and slightly more diverse, without the presence of "Janus" artifacts.
![](./assets/compare_sdxl_lightning.png)

For more information, please refer to our paper [Trajectory Consistency Distillation]().

<a id="usage-anchor"></a>

## Usage
To run the model yourself, you can leverage the 🧨 Diffusers library.
```bash
pip install diffusers transformers accelerate peft
```
And then we clone the repo.
```bash
git clone https://github.com/jabir-zheng/TCD.git
cd TCD
```
Here, we demonstrate the applicability of our TCD LoRA to various models, including [SDXL](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0), [SDXL Inpainting](https://huggingface.co/diffusers/stable-diffusion-xl-1.0-inpainting-0.1), a community model named [Animagine XL](https://huggingface.co/cagliostrolab/animagine-xl-3.0), a styled LoRA [Papercut](https://huggingface.co/TheLastBen/Papercut_SDXL), pretrained [Depth Controlnet](https://huggingface.co/diffusers/controlnet-depth-sdxl-1.0), [Canny Controlnet](https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0) and [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter) to accelerate image generation with high quality in few steps.

### Text-to-Image generation
```py
import torch
from diffusers import StableDiffusionXLPipeline
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

prompt = "Beautiful woman, bubblegum pink, lemon yellow, minty blue, futuristic, high-detail, epic composition, watercolor."

image = pipe(
    prompt=prompt,
    num_inference_steps=4,
    guidance_scale=0,
    # Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step.
    # A value of 0.3 often yields good results.
    # We recommend using a higher eta when increasing the number of inference steps.
    eta=0.3, 
    generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](./assets/t2i_tcd.png)

### Inpainting
```py
import torch
from diffusers import AutoPipelineForInpainting
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_id = "diffusers/stable-diffusion-xl-1.0-inpainting-0.1"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

pipe = AutoPipelineForInpainting.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"

init_image = load_image(img_url).resize((1024, 1024))
mask_image = load_image(mask_url).resize((1024, 1024))

prompt = "a tiger sitting on a park bench"

image = pipe(
  prompt=prompt,
  image=init_image,
  mask_image=mask_image,
  num_inference_steps=8,
  guidance_scale=0,
  eta=0.3, # Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step. A value of 0.3 often yields good results.
  strength=0.99,  # make sure to use `strength` below 1.0
  generator=torch.Generator(device=device).manual_seed(0),
).images[0]

grid_image = make_image_grid([init_image, mask_image, image], rows=1, cols=3)
```
![](./assets/inpainting_tcd.png)

### Versatile for Community Models
```py
import torch
from diffusers import StableDiffusionXLPipeline
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_id = "cagliostrolab/animagine-xl-3.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

prompt = "A man, clad in a meticulously tailored military uniform, stands with unwavering resolve. The uniform boasts intricate details, and his eyes gleam with determination. Strands of vibrant, windswept hair peek out from beneath the brim of his cap."

image = pipe(
    prompt=prompt,
    num_inference_steps=8,
    guidance_scale=0,
    # Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step.
    # A value of 0.3 often yields good results.
    # We recommend using a higher eta when increasing the number of inference steps.
    eta=0.3, 
    generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](./assets/animagine_xl.png)

### Combine with styled LoRA
```py
import torch
from diffusers import StableDiffusionXLPipeline
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"
styled_lora_id = "TheLastBen/Papercut_SDXL"

pipe = StableDiffusionXLPipeline.from_pretrained(base_model_id, torch_dtype=torch.float16, variant="fp16").to(device)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id, adapter_name="tcd")
pipe.load_lora_weights(styled_lora_id, adapter_name="style")
pipe.set_adapters(["tcd", "style"], adapter_weights=[1.0, 1.0])

prompt = "papercut of a winter mountain, snow"

image = pipe(
    prompt=prompt,
    num_inference_steps=4,
    guidance_scale=0,
    # Eta (referred to as `gamma` in the paper) is used to control the stochasticity in every step.
    # A value of 0.3 often yields good results.
    # We recommend using a higher eta when increasing the number of inference steps.
    eta=0.3, 
    generator=torch.Generator(device=device).manual_seed(0),
).images[0]
```
![](./assets/styled_lora.png)

### Compatibility with ControlNet
#### Depth ControlNet
```py
import torch
import numpy as np
from PIL import Image
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler 

device = "cuda"
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to(device)
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")

def get_depth_map(image):
    image = feature_extractor(images=image, return_tensors="pt").pixel_values.to(device)
    with torch.no_grad(), torch.autocast(device):
        depth_map = depth_estimator(image).predicted_depth

    depth_map = torch.nn.functional.interpolate(
        depth_map.unsqueeze(1),
        size=(1024, 1024),
        mode="bicubic",
        align_corners=False,
    )
    depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
    depth_map = (depth_map - depth_min) / (depth_max - depth_min)
    image = torch.cat([depth_map] * 3, dim=1)

    image = image.permute(0, 2, 3, 1).cpu().numpy()[0]
    image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
    return image

base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-depth-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

controlnet = ControlNetModel.from_pretrained(
    controlnet_id,
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    base_model_id,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)
pipe.enable_model_cpu_offload()

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

prompt = "stormtrooper lecture, photorealistic"

image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
depth_image = get_depth_map(image)

controlnet_conditioning_scale = 0.5  # recommended for good generalization

image = pipe(
    prompt, 
    image=depth_image, 
    num_inference_steps=4, 
    guidance_scale=0,
    eta=0.3, # A parameter (referred to as `gamma` in the paper) is used to control the stochasticity in every step. A value of 0.3 often yields good results.
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    generator=torch.Generator(device=device).manual_seed(0),
).images[0]

grid_image = make_image_grid([depth_image, image], rows=1, cols=2)
```
![](./assets/controlnet_depth_tcd.png)

#### Canny ControlNet
```py
import torch
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline
from diffusers.utils import load_image, make_image_grid
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_id = "stabilityai/stable-diffusion-xl-base-1.0"
controlnet_id = "diffusers/controlnet-canny-sdxl-1.0"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

controlnet = ControlNetModel.from_pretrained(
    controlnet_id,
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    base_model_id,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    variant="fp16",
).to(device)
pipe.enable_model_cpu_offload()

pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

prompt = "ultrarealistic shot of a furry blue bird"

canny_image = load_image("https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png")

controlnet_conditioning_scale = 0.5  # recommended for good generalization

image = pipe(
    prompt, 
    image=canny_image, 
    num_inference_steps=4, 
    guidance_scale=0,
    eta=0.3, # A parameter (referred to as `gamma` in the paper) is used to control the stochasticity in every step. A value of 0.3 often yields good results.
    controlnet_conditioning_scale=controlnet_conditioning_scale,
    generator=torch.Generator(device=device).manual_seed(0),
).images[0]

grid_image = make_image_grid([canny_image, image], rows=1, cols=2)
```

![](./assets/controlnet_canny_tcd.png)

### Compatibility with IP-Adapter
⚠️ Please refer to the official [repository](https://github.com/tencent-ailab/IP-Adapter/tree/main) for instructions on installing dependencies for IP-Adapter.
```py
import torch
from diffusers import StableDiffusionXLPipeline
from diffusers.utils import load_image, make_image_grid

from ip_adapter import IPAdapterXL
from scheduling_tcd import TCDScheduler 

device = "cuda"
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
ip_ckpt = "sdxl_models/ip-adapter_sdxl.bin"
tcd_lora_id = "h1t/TCD-SDXL-LoRA"

pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path, 
    torch_dtype=torch.float16, 
    variant="fp16"
)
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)

pipe.load_lora_weights(tcd_lora_id)
pipe.fuse_lora()

ip_model = IPAdapterXL(pipe, image_encoder_path, ip_ckpt, device)

ref_image = load_image("https://raw.githubusercontent.com/tencent-ailab/IP-Adapter/main/assets/images/woman.png").resize((512, 512))

prompt = "best quality, high quality, wearing sunglasses"

image = ip_model.generate(
    pil_image=ref_image, 
    prompt=prompt,
    scale=0.5,
    num_samples=1, 
    num_inference_steps=4, 
    guidance_scale=0,
    eta=0.3, # A parameter (referred to as `gamma` in the paper) is used to control the stochasticity in every step. A value of 0.3 often yields good results.
    seed=0,
)[0]

grid_image = make_image_grid([ref_image, image], rows=1, cols=2)
```
![](./assets/ip_adapter.png)

### Local Gradio Demo
Install the `gradio` library first,
```bash
pip install gradio==3.50.2
```
then local gradio demo can be launched by:
```py
python gradio_app.py
```
![](./assets/gradio_demo.png)

## Citation
```bibtex
@article{zheng2024trajectory,
  title = {Trajectory Consistency Distillation},
  author = {Zheng, Jianbin and Hu, Minghui and Fan, Zhongyi and Wang, Chaoyue and Ding, Changxing and Tao, Dacheng and Cham, Tat-Jen},
  journal = {arXiv},
  year = {2024},
}
```

## Acknowledgments
This codebase heavily relies on the πŸ€—[Diffusers](https://github.com/huggingface/diffusers) library and [LCM](https://github.com/luosiallen/latent-consistency-model).