File size: 11,550 Bytes
3631068
 
 
 
 
 
 
 
 
 
 
 
edd29d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631068
416c7bb
3631068
416c7bb
 
3631068
68dd12a
3631068
 
 
 
68dd12a
 
 
 
3631068
 
 
2d6a578
416c7bb
2d6a578
416c7bb
 
2d6a578
 
 
 
 
 
 
 
 
 
 
 
 
 
416c7bb
2d6a578
416c7bb
 
2d6a578
 
 
 
 
 
 
 
 
 
 
 
 
 
416c7bb
2d6a578
416c7bb
 
2d6a578
 
 
 
 
 
 
 
 
 
 
 
 
3631068
afbe904
 
 
3631068
 
 
 
 
 
afbe904
3631068
 
 
afbe904
 
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afbe904
3631068
 
 
 
912d566
3631068
 
 
afbe904
 
 
3631068
 
 
 
 
 
5c43f60
 
 
d1e10d9
 
 
 
 
 
 
 
 
 
3631068
 
 
 
912d566
e980b66
d1e10d9
3631068
 
 
 
 
 
 
 
 
 
69c8e55
5c43f60
3631068
 
 
69c8e55
3631068
d1e10d9
 
 
 
 
 
 
 
5c43f60
3631068
6ff7b63
d358c49
3631068
d1e10d9
 
 
 
 
 
 
3631068
 
 
 
 
 
 
69c8e55
3631068
d1e10d9
 
 
 
5c43f60
3631068
6ff7b63
69c8e55
3631068
d1e10d9
 
 
 
 
 
 
3631068
5c43f60
 
 
 
 
 
d1e10d9
 
 
 
5c43f60
 
 
 
 
d1e10d9
 
 
 
 
 
 
5c43f60
3631068
 
 
 
 
 
 
912d566
 
49d8194
 
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d8194
 
912d566
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import torchmetrics
from . import config

from typing import Tuple, Dict, List, Any

import numpy as np
import torch
import torchvision
import torch.nn as nn
import pytorch_lightning as ptl


class DeepFontBaseline(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3, 64, 11, 2),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(64, 128, 3, 1, 1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            nn.Conv2d(128, 256, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(256, 256, 3, 1, 1),
            nn.ReLU(),
            # fc
            nn.Flatten(),
            nn.Linear(256 * 12 * 12, 4096),
            nn.ReLU(),
            nn.Linear(4096, 4096),
            nn.ReLU(),
            nn.Linear(4096, config.FONT_COUNT),
        )

    def forward(self, X):
        return self.model(X)


class ResNet18Regressor(nn.Module):
    def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
        super().__init__()
        weights = torchvision.models.ResNet18_Weights.DEFAULT if pretrained else None
        self.model = torchvision.models.resnet18(weights=weights)
        self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
        self.regression_use_tanh = regression_use_tanh

    def forward(self, X):
        X = self.model(X)
        # [0, 1]
        if not self.regression_use_tanh:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
        else:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
        return X


class ResNet34Regressor(nn.Module):
    def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
        super().__init__()
        weights = torchvision.models.ResNet34_Weights.DEFAULT if pretrained else None
        self.model = torchvision.models.resnet34(weights=weights)
        self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)
        self.regression_use_tanh = regression_use_tanh

    def forward(self, X):
        X = self.model(X)
        # [0, 1]
        if not self.regression_use_tanh:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
        else:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
        return X


class ResNet50Regressor(nn.Module):
    def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
        super().__init__()
        weights = torchvision.models.ResNet50_Weights.DEFAULT if pretrained else None
        self.model = torchvision.models.resnet50(weights=weights)
        self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
        self.regression_use_tanh = regression_use_tanh

    def forward(self, X):
        X = self.model(X)
        # [0, 1]
        if not self.regression_use_tanh:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
        else:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
        return X


class ResNet101Regressor(nn.Module):
    def __init__(self, pretrained: bool = False, regression_use_tanh: bool = False):
        super().__init__()
        weights = torchvision.models.ResNet101_Weights.DEFAULT if pretrained else None
        self.model = torchvision.models.resnet101(weights=weights)
        self.model.fc = nn.Linear(2048, config.FONT_COUNT + 12)
        self.regression_use_tanh = regression_use_tanh

    def forward(self, X):
        X = self.model(X)
        # [0, 1]
        if not self.regression_use_tanh:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
        else:
            X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].tanh()
        return X


class FontDetectorLoss(nn.Module):
    def __init__(
        self, lambda_font, lambda_direction, lambda_regression, font_classification_only
    ):
        super().__init__()
        self.category_loss = nn.CrossEntropyLoss()
        self.regression_loss = nn.MSELoss()
        self.lambda_font = lambda_font
        self.lambda_direction = lambda_direction
        self.lambda_regression = lambda_regression
        self.font_classfiication_only = font_classification_only

    def forward(self, y_hat, y):
        font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long())
        if self.font_classfiication_only:
            return self.lambda_font * font_cat
        direction_cat = self.category_loss(
            y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long()
        )
        regression = self.regression_loss(
            y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:]
        )
        return (
            self.lambda_font * font_cat
            + self.lambda_direction * direction_cat
            + self.lambda_regression * regression
        )


class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer, warmup, max_iters):
        self.warmup = warmup
        self.max_num_iters = max_iters
        super().__init__(optimizer)

    def get_lr(self):
        lr_factor = self.get_lr_factor(epoch=self.last_epoch)
        return [base_lr * lr_factor for base_lr in self.base_lrs]

    def get_lr_factor(self, epoch):
        lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
        if epoch <= self.warmup:
            lr_factor *= epoch * 1.0 / self.warmup
        return lr_factor


class FontDetector(ptl.LightningModule):
    def __init__(
        self,
        model: nn.Module,
        lambda_font: float,
        lambda_direction: float,
        lambda_regression: float,
        font_classification_only: bool,
        lr: float,
        betas: Tuple[float, float],
        num_warmup_iters: int,
        num_iters: int,
        num_epochs: int,
    ):
        super().__init__()
        self.model = model
        self.loss = FontDetectorLoss(
            lambda_font, lambda_direction, lambda_regression, font_classification_only
        )
        self.font_accur_train = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        self.font_accur_val = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        self.font_accur_test = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        if not font_classification_only:
            self.direction_accur_train = torchmetrics.Accuracy(
                task="multiclass", num_classes=2
            )
            self.direction_accur_val = torchmetrics.Accuracy(
                task="multiclass", num_classes=2
            )
            self.direction_accur_test = torchmetrics.Accuracy(
                task="multiclass", num_classes=2
            )
        self.lr = lr
        self.betas = betas
        self.num_warmup_iters = num_warmup_iters
        self.num_iters = num_iters
        self.num_epochs = num_epochs
        self.load_epoch = 0
        self.font_classification_only = font_classification_only

    def forward(self, x):
        return self.model(x)

    def training_step(
        self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> Dict[str, Any]:
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("train_loss", loss, prog_bar=True, sync_dist=True)
        # accur
        self.log(
            "train_font_accur",
            self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
            sync_dist=True,
        )
        if not self.font_classification_only:
            self.log(
                "train_direction_accur",
                self.direction_accur_train(
                    y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
                ),
                sync_dist=True,
            )
        return {"loss": loss}

    def on_train_epoch_end(self) -> None:
        self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
        self.font_accur_train.reset()
        if not self.font_classification_only:
            self.log(
                "train_direction_accur",
                self.direction_accur_train.compute(),
                sync_dist=True,
            )
            self.direction_accur_train.reset()

    def validation_step(
        self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> Dict[str, Any]:
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)
        self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
        if not self.font_classification_only:
            self.direction_accur_val.update(
                y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
            )
        return {"loss": loss}

    def on_validation_epoch_end(self):
        self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True)
        self.font_accur_val.reset()
        if not self.font_classification_only:
            self.log(
                "val_direction_accur",
                self.direction_accur_val.compute(),
                sync_dist=True,
            )
            self.direction_accur_val.reset()

    def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("test_loss", loss, prog_bar=True, sync_dist=True)
        self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
        if not self.font_classification_only:
            self.direction_accur_test.update(
                y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
            )
        return {"loss": loss}

    def on_test_epoch_end(self) -> None:
        self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True)
        self.font_accur_test.reset()
        if not self.font_classification_only:
            self.log(
                "test_direction_accur",
                self.direction_accur_test.compute(),
                sync_dist=True,
            )
            self.direction_accur_test.reset()

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(
            self.model.parameters(), lr=self.lr, betas=self.betas
        )
        self.scheduler = CosineWarmupScheduler(
            optimizer, self.num_warmup_iters, self.num_iters
        )
        print("Load epoch:", self.load_epoch)
        for _ in range(self.num_iters * self.load_epoch // self.num_epochs):
            self.scheduler.step()
        print("Current learning rate set to:", self.scheduler.get_last_lr())
        return optimizer

    def optimizer_step(
        self,
        epoch: int,
        batch_idx: int,
        optimizer,
        optimizer_idx: int = 0,
        *args,
        **kwargs
    ):
        super().optimizer_step(
            epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs
        )
        self.log("lr", self.scheduler.get_last_lr()[0])
        self.scheduler.step()

    def on_load_checkpoint(self, checkpoint: Dict[str, Any]) -> None:
        self.load_epoch = checkpoint["epoch"]