File size: 6,790 Bytes
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
acab651
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c43f60
 
 
 
 
 
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
69c8e55
5c43f60
3631068
 
 
69c8e55
3631068
 
 
 
 
 
69c8e55
3631068
5c43f60
3631068
6ff7b63
d358c49
 
 
 
3631068
 
 
 
 
 
 
 
 
69c8e55
3631068
 
 
 
5c43f60
3631068
6ff7b63
69c8e55
 
 
 
3631068
 
 
5c43f60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3631068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torchmetrics
from . import config

from typing import Tuple, Dict, List, Any

import numpy as np
import torch
import torchvision
import torch.nn as nn
import pytorch_lightning as ptl


class ResNet18Regressor(nn.Module):
    def __init__(self):
        super().__init__()
        self.model = torchvision.models.resnet18(weights=False)
        self.model.fc = nn.Linear(512, config.FONT_COUNT + 12)

    def forward(self, X):
        X = self.model(X)
        # [0, 1]
        X[..., config.FONT_COUNT + 2 :] = X[..., config.FONT_COUNT + 2 :].sigmoid()
        return X


class FontDetectorLoss(nn.Module):
    def __init__(self, lambda_font, lambda_direction, lambda_regression):
        super().__init__()
        self.category_loss = nn.CrossEntropyLoss()
        self.regression_loss = nn.MSELoss()
        self.lambda_font = lambda_font
        self.lambda_direction = lambda_direction
        self.lambda_regression = lambda_regression

    def forward(self, y_hat, y):
        font_cat = self.category_loss(y_hat[..., : config.FONT_COUNT], y[..., 0].long())
        direction_cat = self.category_loss(
            y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1].long()
        )
        regression = self.regression_loss(
            y_hat[..., config.FONT_COUNT + 2 :], y[..., 2:]
        )
        return (
            self.lambda_font * font_cat
            + self.lambda_direction * direction_cat
            + self.lambda_regression * regression
        )


class CosineWarmupScheduler(torch.optim.lr_scheduler._LRScheduler):
    def __init__(self, optimizer, warmup, max_iters):
        self.warmup = warmup
        self.max_num_iters = max_iters
        super().__init__(optimizer)

    def get_lr(self):
        lr_factor = self.get_lr_factor(epoch=self.last_epoch)
        return [base_lr * lr_factor for base_lr in self.base_lrs]

    def get_lr_factor(self, epoch):
        lr_factor = 0.5 * (1 + np.cos(np.pi * epoch / self.max_num_iters))
        if epoch <= self.warmup:
            lr_factor *= epoch * 1.0 / self.warmup
        return lr_factor


class FontDetector(ptl.LightningModule):
    def __init__(
        self,
        model: nn.Module,
        lambda_font: float,
        lambda_direction: float,
        lambda_regression: float,
        lr: float,
        betas: Tuple[float, float],
        num_warmup_iters: int,
        num_iters: int,
    ):
        super().__init__()
        self.model = model
        self.loss = FontDetectorLoss(lambda_font, lambda_direction, lambda_regression)
        self.font_accur_train = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        self.direction_accur_train = torchmetrics.Accuracy(
            task="multiclass", num_classes=2
        )
        self.font_accur_val = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        self.direction_accur_val = torchmetrics.Accuracy(
            task="multiclass", num_classes=2
        )
        self.font_accur_test = torchmetrics.Accuracy(
            task="multiclass", num_classes=config.FONT_COUNT
        )
        self.direction_accur_test = torchmetrics.Accuracy(
            task="multiclass", num_classes=2
        )
        self.lr = lr
        self.betas = betas
        self.num_warmup_iters = num_warmup_iters
        self.num_iters = num_iters

    def forward(self, x):
        return self.model(x)

    def training_step(
        self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> Dict[str, Any]:
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("train_loss", loss, prog_bar=True, sync_dist=True)
        # accur
        self.log(
            "train_font_accur",
            self.font_accur_train(y_hat[..., : config.FONT_COUNT], y[..., 0]),
            sync_dist=True,
        )
        self.log(
            "train_direction_accur",
            self.direction_accur_train(
                y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
            ),
            sync_dist=True,
        )
        return {"loss": loss}

    def on_train_epoch_end(self) -> None:
        self.log("train_font_accur", self.font_accur_train.compute(), sync_dist=True)
        self.log(
            "train_direction_accur", self.direction_accur_train.compute(), sync_dist=True
        )
        self.font_accur_train.reset()
        self.direction_accur_train.reset()

    def validation_step(
        self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int
    ) -> Dict[str, Any]:
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("val_loss", loss, prog_bar=True, sync_dist=True)
        self.font_accur_val.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
        self.direction_accur_val.update(
            y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
        )
        return {"loss": loss}

    def on_validation_epoch_end(self):
        self.log("val_font_accur", self.font_accur_val.compute(), sync_dist=True)
        self.log(
            "val_direction_accur", self.direction_accur_val.compute(), sync_dist=True
        )
        self.font_accur_val.reset()
        self.direction_accur_val.reset()

    def test_step(self, batch: Tuple[torch.Tensor, torch.Tensor], batch_idx: int):
        X, y = batch
        y_hat = self.forward(X)
        loss = self.loss(y_hat, y)
        self.log("test_loss", loss, prog_bar=True, sync_dist=True)
        self.font_accur_test.update(y_hat[..., : config.FONT_COUNT], y[..., 0])
        self.direction_accur_test.update(
            y_hat[..., config.FONT_COUNT : config.FONT_COUNT + 2], y[..., 1]
        )
        return {"loss": loss}

    def on_test_epoch_end(self) -> None:
        self.log("test_font_accur", self.font_accur_test.compute(), sync_dist=True)
        self.log(
            "test_direction_accur", self.direction_accur_test.compute(), sync_dist=True
        )
        self.font_accur_test.reset()
        self.direction_accur_test.reset()

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(
            self.model.parameters(), lr=self.lr, betas=self.betas
        )
        self.scheduler = CosineWarmupScheduler(
            optimizer, self.num_warmup_iters, self.num_iters
        )
        return optimizer

    def optimizer_step(
        self,
        epoch: int,
        batch_idx: int,
        optimizer,
        optimizer_idx: int = 0,
        *args,
        **kwargs
    ):
        super().optimizer_step(
            epoch, batch_idx, optimizer, optimizer_idx, *args, **kwargs
        )
        self.log("lr", self.scheduler.get_last_lr()[0])
        self.scheduler.step()