File size: 3,780 Bytes
716ee53
 
 
 
 
 
6c2edf7
716ee53
 
6c2edf7
716ee53
 
 
 
 
 
 
 
 
 
 
 
 
be68e59
716ee53
 
 
 
 
 
 
 
 
f8472e1
5c3dbf6
716ee53
a9b34cd
716ee53
 
 
 
 
 
 
 
 
a9b34cd
 
 
 
 
 
 
 
5c3dbf6
 
 
a9b34cd
716ee53
 
48a5a65
716ee53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c2edf7
 
5c3dbf6
fb7efe2
6c2edf7
 
 
716ee53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import sys
import traceback
import pickle
import os
import concurrent.futures
from tqdm import tqdm
import time
from font_dataset.font import load_fonts
from font_dataset.layout import generate_font_image
from font_dataset.text import CorpusGeneratorManager, UnqualifiedFontException
from font_dataset.background import background_image_generator


global_script_index = int(sys.argv[1])
global_script_index_total = int(sys.argv[2])

print(f"Mission {global_script_index} / {global_script_index_total}")

num_workers = 32

cjk_ratio = 3

train_cnt = 100
val_cnt = 5
test_cnt = 30

train_cnt_cjk = int(train_cnt * cjk_ratio)
val_cnt_cjk = int(val_cnt * cjk_ratio)
test_cnt_cjk = int(test_cnt * cjk_ratio)

dataset_path = "./dataset/font_img"
os.makedirs(dataset_path, exist_ok=True)

unqualified_log_file_name = f"unqualified_font_{time.time()}.txt"
runtime_exclusion_list = []

fonts, exclusion_rule = load_fonts()
corpus_manager = CorpusGeneratorManager()
images = background_image_generator()


def generate_dataset(dataset_type: str, cnt: int):
    dataset_bath_dir = os.path.join(dataset_path, dataset_type)
    os.makedirs(dataset_bath_dir, exist_ok=True)

    def _generate_single(args):
        i, j, font = args
        print(
            f"Generating {dataset_type} font: {font.path} {i} / {len(fonts)}, image {j}"
        )

        if exclusion_rule(font):
            print(f"Excluded font: {font.path}")
            return
        if font.path in runtime_exclusion_list:
            print(f"Excluded font: {font.path}")
            return

        while True:
            try:
                image_file_name = f"font_{i}_img_{j}.jpg"
                label_file_name = f"font_{i}_img_{j}.bin"

                image_file_path = os.path.join(dataset_bath_dir, image_file_name)
                label_file_path = os.path.join(dataset_bath_dir, label_file_name)

                # detect cache
                if os.path.exists(image_file_path) and os.path.exists(label_file_path):
                    return

                im = next(images)
                im, label = generate_font_image(
                    im,
                    font,
                    corpus_manager,
                )

                im.save(image_file_path)
                pickle.dump(label, open(label_file_path, "wb"))
                return
            except UnqualifiedFontException as e:
                print(f"SKIPPING Unqualified font: {e.font.path}")
                runtime_exclusion_list.append(e.font.path)
                with open(unqualified_log_file_name, "a+") as f:
                    f.write(f"{e.font.path}\n")
                return
            except Exception as _:
                traceback.print_exc()
                continue

    work_list = []

    # divide len(fonts) into 64 parts and choose the third part for this script
    for i in range(
        (global_script_index - 1) * len(fonts) // global_script_index_total,
        global_script_index * len(fonts) // global_script_index_total,
    ):
        font = fonts[i]
        if font.language == "CJK":
            true_cnt = cnt * cjk_ratio
        else:
            true_cnt = cnt
        for j in range(true_cnt):
            work_list.append((i, j, font))

    # with concurrent.futures.ThreadPoolExecutor(max_workers=num_workers) as executor:
    #     _ = list(
    #         tqdm(
    #             executor.map(_generate_single, work_list),
    #             total=len(work_list),
    #             leave=True,
    #             desc=dataset_type,
    #             miniters=1,
    #         )
    #     )

    for i in tqdm(range(len(work_list))):
        _generate_single(work_list[i])


generate_dataset("train", train_cnt)
generate_dataset("val", val_cnt)
generate_dataset("test", test_cnt)