Spaces:
Running
Running
File size: 2,673 Bytes
e4eb5c5 944dedf 4492d6d 19be65d a82f51b 93b0a99 4fda610 a82f51b 4fda610 a82f51b 4eb15f6 944dedf 8ce2dae 19be65d 7e5c84b 686e3d3 944dedf f6a94c1 944dedf 1782e10 4e24051 f6a94c1 1782e10 4e24051 f845b05 944dedf f6a94c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import gradio as gr
import wave
import numpy as np
from io import BytesIO
from huggingface_hub import hf_hub_download
from piper import PiperVoice
from transformers import pipeline
import hazm
import typing
normalizer = hazm.Normalizer()
sent_tokenizer = hazm.SentenceTokenizer()
word_tokenizer = hazm.WordTokenizer()
tagger_path = hf_hub_download(repo_id="gyroing/HAZM_POS_TAGGER", filename="pos_tagger.model")
tagger = hazm.POSTagger(model=tagger_path)
def preprocess_text(text: str) -> typing.List[typing.List[str]]:
"""Split/normalize text into sentences/words with hazm"""
text = normalizer.normalize(text)
processed_sentences = []
for sentence in sent_tokenizer.tokenize(text):
words = word_tokenizer.tokenize(sentence)
processed_words = fix_words(words)
processed_sentences.append(" ".join(processed_words))
return " ".join(processed_sentences)
def fix_words(words: typing.List[str]) -> typing.List[str]:
fixed_words = []
for word, pos in tagger.tag(words):
if pos[-1] == "Z":
if word[-1] != "ِ":
if (word[-1] == "ه") and (word[-2] != "ا"):
word += "ی"
word += "ِ"
fixed_words.append(word)
return fixed_words
def synthesize_speech(text):
model_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-meduim.onnx")
config_path = hf_hub_download(repo_id="gyroing/Persian-Piper-Model-gyro", filename="fa_IR-gyro-meduim.onnx.json")
voice = PiperVoice.load(model_path, config_path)
# Create an in-memory buffer for the WAV file
buffer = BytesIO()
with wave.open(buffer, 'wb') as wav_file:
wav_file.setframerate(voice.config.sample_rate)
wav_file.setsampwidth(2) # 16-bit
wav_file.setnchannels(1) # mono
# Synthesize speech
voice.synthesize(text, wav_file)
# Convert buffer to NumPy array for Gradio output
buffer.seek(0)
audio_data = np.frombuffer(buffer.read(), dtype=np.int16)
return audio_data.tobytes(), None
# Using Gradio Blocks
with gr.Blocks(theme=gr.themes.Base()) as blocks:
gr.Markdown("# Text to Speech Synthesizer")
gr.Markdown("Enter text to synthesize it into speech using PiperVoice.")
input_text = preprocess_text(gr.Textbox(label="Input Text"))
output_audio = gr.Audio(label="Synthesized Speech", type="numpy")
submit_button = gr.Button("Synthesize")
submit_button.click(synthesize_speech, inputs=input_text, outputs=[output_audio])
# Run the app
blocks.launch() |