File size: 6,937 Bytes
a8d4d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64f574
a8d4d3c
 
 
 
 
e64f574
 
a8d4d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62ebebb
 
 
a8d4d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e64f574
 
 
 
 
 
 
 
 
 
 
 
a8d4d3c
 
e64f574
 
 
 
a8d4d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
78680b9
62ebebb
a8d4d3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a85a25f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import gradio as gr
import transformers
import numpy as np
import librosa
import spaces

# ---------------------------
# Quiet OpenMP noise on Spaces
# ---------------------------
os.environ["OMP_NUM_THREADS"] = "1"
os.environ["OPENBLAS_NUM_THREADS"] = "1"
os.environ["MKL_NUM_THREADS"] = "1"
os.environ["VECLIB_MAXIMUM_THREADS"] = "1"
os.environ["NUMEXPR_NUM_THREADS"] = "1"

# ---------------------------
# Model config
# ---------------------------
MODEL_ID = "sarvamai/shuka_v1"
TARGET_SR = 16000  # Shuka uses 16k audio

# ---------------------------
# Global pipeline (lazy-loaded)
# ---------------------------
pipe = None

def load_model():
    """Load the Shuka v1 pipeline (8.73B)."""
    global pipe
    if pipe is not None:
        return "βœ… Model already loaded!"

    try:
        print(f"Loading Shuka model: {MODEL_ID}")
        pipe = transformers.pipeline(
            model=MODEL_ID,
            trust_remote_code=True,   # required for Shuka custom pipeline
            device_map="auto",  # Use auto device mapping for HF Spaces
            torch_dtype="bfloat16",
        )
        print("βœ… Pipeline loaded successfully!")
        return "βœ… Model pipeline loaded successfully!"
    except Exception as e:
        import traceback
        err = f"❌ Error loading model: {e}\n\n{traceback.format_exc()}"
        print(err)
        return err


# ---------------------------
# Audio utilities
# ---------------------------
def load_audio_from_gradio(audio_input):
    """
    Supports both gr.Audio types:
      - type="numpy"    -> (sample_rate, np.ndarray)
      - type="filepath" -> "/tmp/....wav"
    Returns (audio: float32 mono @ 16k, sr: int)
    """
    if isinstance(audio_input, tuple):
        sr, audio = audio_input
    elif isinstance(audio_input, str):
        # Read from tmp filepath
        audio, sr = librosa.load(audio_input, sr=None)
    else:
        raise ValueError(f"Unsupported audio input type: {type(audio_input)}")

    # Ensure float32 ndarray
    audio = np.asarray(audio, dtype=np.float32)

    # Stereo -> mono
    if audio.ndim > 1:
        audio = np.mean(audio, axis=1)

    # Trim leading/trailing silence (conservative)
    audio, _ = librosa.effects.trim(audio, top_db=30)

    # Remove DC offset
    if audio.size:
        audio = audio - float(np.mean(audio))

    # Normalize peak to ~0.98 to improve quiet recordings
    peak = float(np.max(np.abs(audio))) if audio.size else 0.0
    if peak > 0:
        audio = (0.98 / peak) * audio

    # Resample to 16k
    if sr != TARGET_SR:
        audio = librosa.resample(audio, orig_sr=sr, target_sr=TARGET_SR)
        sr = TARGET_SR

    # CRITICAL: Whisper encoder has hard limit of 3000 mel features
    # At 16kHz, this equals exactly 30 seconds (100 mel features/second)
    max_sec = 30
    if len(audio) / float(sr) > max_sec:
        audio = audio[: int(max_sec * sr)]

    return audio, sr


# ---------------------------
# Inference handler
# ---------------------------
@spaces.GPU
def analyze_audio(audio_file, system_prompt):
    """
    System prompt contains analysis instructions.
    Audio is processed using the <|audio|> placeholder token.
    """
    global pipe

    if pipe is None:
        status = load_model()
        if status.startswith("❌"):
            return status

    if audio_file is None:
        return "❌ Please upload or record an audio file."

    # Load & preprocess audio
    try:
        audio, sr = load_audio_from_gradio(audio_file)
    except Exception as e:
        return f"❌ Failed to read/process audio: {e}"

    # Quick quality checks
    dur = len(audio) / float(sr) if sr else 0
    rms = float(np.sqrt(np.mean(audio**2))) if audio.size else 0.0
    if dur < 1.0:
        return "❌ Audio too short (<1s). Please upload a longer sample."
    if rms < 1e-3:
        return "❌ Audio extremely quiet. Increase mic gain or speak closer to the microphone."

    sys_text = (system_prompt or "Respond naturally and informatively.").strip()

    # Build turns: system message with user instructions + user message with audio token
    turns = [
        {"role": "system", "content": sys_text},
        {"role": "user", "content": "<|audio|>"}
    ]

    try:
        out = pipe(
            {"audio": audio, "turns": turns, "sampling_rate": sr},
            max_new_tokens=512,
        )
        # Debug: print raw output
        print(f"Raw output type: {type(out)}")
        print(f"Raw output: {out}")

        # Extract text from response
        if isinstance(out, list) and len(out) > 0:
            text = out[0].get("generated_text", str(out[0]))
        elif isinstance(out, dict):
            text = out.get("generated_text", str(out))
        else:
            text = str(out)

        return f"βœ… Processed.\n\n{text}"
    except Exception as e:
        import traceback
        error_details = traceback.format_exc()
        print(f"Full error: {error_details}")
        return f"❌ Inference error: {e}\n\nDetails:\n{error_details}"


# ---------------------------
# UI
# ---------------------------
startup_status = "⏳ Model loads on first request (8.73B parameters)."

with gr.Blocks(title="Shuka v1 (8.73B) β€” Audio Analyzer", theme=gr.themes.Soft()) as demo:
    gr.Markdown("""
    # 🎀 Shuka v1 (8.73B) β€” Audio Analyzer
    Upload an audio file (or record) and provide **analysis instructions**.
    The instructions tell the AI what to analyze in the audio using the `<|audio|>` token.

    **Shuka** is a multilingual audio-language model with strong capabilities in **11 Indic languages** including Hindi, Bengali, Tamil, Telugu, Marathi, Gujarati, Kannada, Malayalam, Punjabi, Odia, and Assamese.

    ⚠️ **Note:** Audio is automatically capped at **30 seconds maximum** due to Whisper encoder constraints (3000 mel features limit). For best results, use clear, concise audio recordings.
    """)

    with gr.Row():
        with gr.Column():
            # For uploads, `filepath` is robust; mic also works.
            audio_input = gr.Audio(
                label="🎡 Upload or Record Audio",
                sources=["upload", "microphone"],
                type="filepath",   # handler also supports numpy tuples
            )
            system_prompt = gr.Textbox(
                label="🧠 Analysis Instructions (what should the AI analyze in the audio?)",
                value="Respond naturally and informatively.",
                lines=8,
                max_lines=20,
            )
            submit_btn = gr.Button("πŸš€ Analyze", variant="primary")

        with gr.Column():
            output = gr.Markdown(
                label="πŸ€– Model Response",
                value=f"**Model Status:** {startup_status}",
            )

    submit_btn.click(
        fn=analyze_audio,
        inputs=[audio_input, system_prompt],
        outputs=output,
    )

if __name__ == "__main__":
    demo.launch()