File size: 8,235 Bytes
8e55e24
 
 
 
 
f1ab553
8e55e24
f1ab553
8e55e24
6e30432
8e55e24
 
f1ab553
8e55e24
f1ab553
8e55e24
 
 
286ae6c
 
 
 
 
 
 
 
 
 
 
 
 
 
edb5ebf
 
 
 
 
 
 
7bb2df2
edb5ebf
 
 
 
 
 
 
 
7bb2df2
edb5ebf
 
 
6e30432
 
f1ab553
 
 
6e30432
f1ab553
6e30432
edb5ebf
 
 
 
 
 
6e30432
edb5ebf
 
 
 
 
 
 
 
 
 
6e30432
edb5ebf
 
 
 
 
 
6e30432
 
edb5ebf
 
 
bc809a1
 
6e30432
bc809a1
 
 
 
 
037bd43
ef613df
6e30432
ef613df
 
edb5ebf
6e30432
edb5ebf
 
 
 
 
ef613df
 
edb5ebf
6e30432
edb5ebf
6e30432
edb5ebf
 
 
6e30432
edb5ebf
6e30432
ef613df
 
6e30432
edb5ebf
 
ef613df
bc809a1
6e30432
 
bc809a1
 
ef613df
6e30432
 
 
 
 
 
ef613df
 
edb5ebf
 
 
 
 
 
 
 
 
 
 
 
6e30432
edb5ebf
6e30432
edb5ebf
ef613df
121637d
6e30432
bc809a1
f97daf3
 
785c591
f0f19d6
f97daf3
785c591
bc809a1
f97daf3
 
785c591
f97daf3
 
008505a
f97daf3
6e30432
f97daf3
ad2bd62
6e30432
f97daf3
 
ad2bd62
f97daf3
785c591
f97daf3
 
 
 
 
ad2bd62
f97daf3
785c591
f97daf3
 
 
 
ad2bd62
 
f97daf3
 
 
 
 
6e30432
ef613df
6e30432
 
 
 
f97daf3
 
 
 
6e30432
 
 
 
 
 
 
 
 
 
 
 
f97daf3
bc809a1
 
 
 
 
f97daf3
 
 
 
6e30432
bc809a1
f97daf3
edb5ebf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import os
import subprocess
# 编译 monotonic_align
def compile_monotonic_align():
    if not os.path.exists("monotonic_align/monotonic_align/core.cpython-*.so"):
        print("正在编译 monotonic_align...")
        if not os.path.exists("monotonic_align"):
            raise FileNotFoundError("monotonic_align 文件夹未找到!请确保它存在于根目录中。")
        os.chdir("monotonic_align")
        os.makedirs("monotonic_align", exist_ok=True)
        subprocess.run(["python", "setup.py", "build_ext", "--inplace"], check=True)
        os.chdir("..")
        print("monotonic_align 编译成功!")
    else:
        print("monotonic_align 已编译,跳过...")

compile_monotonic_align()

import gradio as gr
import torch
import numpy as np
from scipy.io.wavfile import write
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import get_bert, cleaned_text_to_sequence
from text.cleaner import clean_text
from huggingface_hub import hf_hub_download, snapshot_download



# 模型配置
MODEL_CONFIG = {
    "roberta": {
        "repo_id": "hfl/chinese-roberta-wwm-ext-large"
    },
    "vits": {
        "repo_id": "guetLzy/BERT-ISTFT-VITS-Model",
        "files": ["G_25000.pth"]
    }
}

# 设备设置
device = "cuda" if torch.cuda.is_available() else "cpu"

# 可用的模型选项
MODEL_OPTIONS = {
    "VITS_Model": "models/G_25000.pth",
}

def download_models():
    os.makedirs("./bert/chinese-roberta-wwm-ext-large", exist_ok=True)
    os.makedirs("./models", exist_ok=True)
    roberta_path = snapshot_download(
        repo_id=MODEL_CONFIG["roberta"]["repo_id"],
        local_dir="./bert/chinese-roberta-wwm-ext-large",
        resume_download=True
    )
    roberta_paths = {"repo_dir": roberta_path}
    vits_paths = {}
    for model_name, model_path in MODEL_OPTIONS.items():
        path = hf_hub_download(
            repo_id=MODEL_CONFIG["vits"]["repo_id"],
            filename=os.path.basename(model_path),
            local_dir="./models",
            resume_download=True
        )
        vits_paths[model_name] = path
    return {
        "roberta": roberta_paths,
        "vits": vits_paths
    }

model_paths = download_models()

# 加载配置和模型
hps = utils.get_hparams_from_file("configs/1.json")
net_g = SynthesizerTrn(
    len(symbols),
    hps.data.filter_length // 2 + 1,
    hps.train.segment_size // hps.data.hop_length,
    n_speakers=hps.data.n_speakers,
    **hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint(model_paths["vits"]["VITS_Model"], net_g, None)

def get_text(text, hps, language_str="ZH"):
    """处理输入文本,生成语音所需的序列,并返回音素、音调和word2ph序列"""
    # 清理文本,获取初始 phone, tone 和 word2ph
    norm_text, phone, tone, word2ph = clean_text(text, language_str)
    
    # 保存处理前的 phone, tone 和 word2ph 用于显示
    phone_list = phone.copy()  # 音素序列
    tone_list = tone.copy()    # 音调序列
    word2ph_list = word2ph.copy()  # word2ph序列
    
    # 转换为序列
    phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
    
    # 添加空白(如果配置要求)
    if hps.data.add_blank:
        phone = commons.intersperse(phone, 0)
        tone = commons.intersperse(tone, 0)
        language = commons.intersperse(language, 0)
        for i in range(len(word2ph)):
            word2ph[i] = word2ph[i] * 2
        word2ph[0] += 1
    
    # 获取 BERT 特征
    if hps.data.use_bert:
        bert = get_bert(norm_text, word2ph, language_str, device)
        del word2ph
        assert bert.shape[-1] == len(phone)
        if language_str == "ZH":
            bert = bert
        else:
            bert = torch.zeros(1024, len(phone))
    else:
        bert = torch.zeros(1024, len(phone))
    
    # 转换为张量
    phone = torch.LongTensor(phone)
    tone = torch.LongTensor(tone)
    language = torch.LongTensor(language)
    
    return bert, phone, tone, language, phone_list, tone_list, word2ph_list

def generate_audio(text, noise_scale=1.0, noise_scale_w=0.8, length_scale=1.0, speaker_id="SSB0005"):
    """生成音频文件并返回音素、音调和word2ph序列"""
    bert, phones, tones, language_id, phone_list, tone_list, word2ph_list = get_text(text, hps)
    
    with torch.no_grad():
        x_tst = phones.to(device).unsqueeze(0)
        tones = tones.to(device).unsqueeze(0)
        language_id = language_id.to(device).unsqueeze(0)
        bert = bert.to(device).unsqueeze(0)
        x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
        sid = torch.LongTensor([hps.data.spk2id[speaker_id]]).to(device)
        
        audio = (
            net_g.infer(
                x_tst,
                x_tst_lengths,
                sid,
                tones,
                language_id,
                bert,
                noise_scale=noise_scale,
                noise_scale_w=noise_scale_w,
                length_scale=length_scale,
            )[0][0, 0]
            .data.cpu()
            .float()
            .numpy()
        )
    
    output_path = "output.wav"
    write(output_path, 22050, (audio * 32767.0).astype(np.int16))
    return output_path, phone_list, tone_list, word2ph_list

with gr.Blocks(
    title="BERT-ISTFT-VITS中文语音合成系统",
    theme="gstaff/sketch"
) as interface:
    gr.Markdown("# BERT-ISTFT-VITS中文语音合成系统")
    gr.Markdown("输入中文文本,调整参数并选择说话人以生成语音。查看处理后的音素、音调和word2ph序列。")

    with gr.Row():
        with gr.Column(scale=1):
            text_input = gr.Textbox(
                label="输入文本",
                value="桂林电子科技大学",
                placeholder="请输入中文文本...",
                lines=5,
            )
            with gr.Group():
                gr.Markdown("### 参数调整")
                noise_scale = gr.Slider(
                    minimum=0.1,
                    maximum=1,
                    step=0.1,
                    value=0.667,
                    label="噪声比例",
                    info="控制生成音频的噪声水平"
                )
                noise_scale_w = gr.Slider(
                    minimum=0.1,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="噪声比例 W",
                    info="控制音调的噪声影响"
                )
                length_scale = gr.Slider(
                    minimum=0.1,
                    maximum=1,
                    step=0.1,
                    value=1.0,
                    label="语速比例",
                    info="调整语音的播放速度"
                )
                speaker_id = gr.Dropdown(
                    choices=list(hps.data.spk2id.keys()),
                    label="选择说话人",
                    value="SSB0005",
                    info="选择生成语音的说话人"
                )

        with gr.Column(scale=1):
            audio_output = gr.Audio(
                label="生成的音频",
                type="filepath",
                interactive=False
            )
            phoneme_output = gr.Textbox(
                label="音素序列 (Phones)",
                placeholder="处理后的音素序列将显示在此...",
                interactive=False
            )
            tone_output = gr.Textbox(
                label="音调序列 (Tones)",
                placeholder="处理后的音调序列将显示在此...",
                interactive=False
            )
            word2ph_output = gr.Textbox(
                label="Word-to-Phoneme序列 (Word2ph)",
                placeholder="处理后的word2ph序列将显示在此...",
                interactive=False
            )
            generate_btn = gr.Button("生成语音", variant="primary")

    generate_btn.click(
        fn=generate_audio,
        inputs=[text_input, noise_scale, noise_scale_w, length_scale, speaker_id],
        outputs=[audio_output, phoneme_output, tone_output, word2ph_output]
    )

interface.launch()