File size: 12,124 Bytes
18d926f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
"""Training code for the detector model"""
import argparse
import os
import subprocess
import sys
from itertools import count
from multiprocessing import Process
import torch
import torch.distributed as dist
from torch import nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim import Adam
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
from tqdm import tqdm
from transformers import *
from .dataset import Corpus, EncodedDataset
from .download import download
from .utils import summary, distributed
def setup_distributed(port=29500):
if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1:
return 0, 1
if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ:
from mpi4py import MPI
mpi_rank = MPI.COMM_WORLD.Get_rank()
mpi_size = MPI.COMM_WORLD.Get_size()
os.environ["MASTER_ADDR"] = '127.0.0.1'
os.environ["MASTER_PORT"] = str(port)
dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank)
return mpi_rank, mpi_size
dist.init_process_group(backend="nccl", init_method="env://")
return dist.get_rank(), dist.get_world_size()
def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None):
if fake_dataset == 'TWO':
download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir)
elif fake_dataset == 'THREE':
download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir)
else:
download(real_dataset, fake_dataset, data_dir=data_dir)
real_corpus = Corpus(real_dataset, data_dir=data_dir)
if fake_dataset == "TWO":
real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2
fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']]
fake_train = sum([corpus.train for corpus in fake_corpora], [])
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
elif fake_dataset == "THREE":
real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3
fake_corpora = [Corpus(name, data_dir=data_dir) for name in
['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']]
fake_train = sum([corpus.train for corpus in fake_corpora], [])
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
else:
fake_corpus = Corpus(fake_dataset, data_dir=data_dir)
real_train, real_valid = real_corpus.train, real_corpus.valid
fake_train, fake_valid = fake_corpus.train, fake_corpus.valid
Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler
min_sequence_length = 10 if random_sequence_length else None
train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length,
epoch_size, token_dropout, seed)
train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0)
validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer)
validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset))
return train_loader, validation_loader
def accuracy_sum(logits, labels):
if list(logits.shape) == list(labels.shape) + [2]:
# 2-d outputs
classification = (logits[..., 0] < logits[..., 1]).long().flatten()
else:
classification = (logits > 0).long().flatten()
assert classification.shape == labels.shape
return (classification == labels).float().sum().item()
def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'):
model.train()
train_accuracy = 0
train_epoch_size = 0
train_loss = 0
with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop:
for texts, masks, labels in loop:
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
batch_size = texts.shape[0]
optimizer.zero_grad()
loss, logits = model(texts, attention_mask=masks, labels=labels)
loss.backward()
optimizer.step()
batch_accuracy = accuracy_sum(logits, labels)
train_accuracy += batch_accuracy
train_epoch_size += batch_size
train_loss += loss.item() * batch_size
loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size)
return {
"train/accuracy": train_accuracy,
"train/epoch_size": train_epoch_size,
"train/loss": train_loss
}
def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'):
model.eval()
validation_accuracy = 0
validation_epoch_size = 0
validation_loss = 0
records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}',
disable=dist.is_available() and dist.get_rank() > 0)]
records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))]
with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad():
for example in loop:
losses = []
logit_votes = []
for texts, masks, labels in example:
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
batch_size = texts.shape[0]
loss, logits = model(texts, attention_mask=masks, labels=labels)
losses.append(loss)
logit_votes.append(logits)
loss = torch.stack(losses).mean(dim=0)
logits = torch.stack(logit_votes).mean(dim=0)
batch_accuracy = accuracy_sum(logits, labels)
validation_accuracy += batch_accuracy
validation_epoch_size += batch_size
validation_loss += loss.item() * batch_size
loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size)
return {
"validation/accuracy": validation_accuracy,
"validation/epoch_size": validation_epoch_size,
"validation/loss": validation_loss
}
def _all_reduce_dict(d, device):
# wrap in tensor and use reduce to gpu0 tensor
output_d = {}
for (key, value) in sorted(d.items()):
tensor_input = torch.tensor([[value]]).to(device)
torch.distributed.all_reduce(tensor_input)
output_d[key] = tensor_input.item()
return output_d
def run(max_epochs=None,
device=None,
batch_size=24,
max_sequence_length=128,
random_sequence_length=False,
epoch_size=None,
seed=None,
data_dir='data',
real_dataset='webtext',
fake_dataset='xl-1542M-nucleus',
token_dropout=None,
large=False,
learning_rate=2e-5,
weight_decay=0,
**kwargs):
args = locals()
rank, world_size = setup_distributed()
if device is None:
device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu'
print('rank:', rank, 'world_size:', world_size, 'device:', device)
import torch.distributed as dist
if distributed() and rank > 0:
dist.barrier()
model_name = 'roberta-large' if large else 'roberta-base'
tokenization_utils.logger.setLevel('ERROR')
tokenizer = RobertaTokenizer.from_pretrained(model_name)
model = RobertaForSequenceClassification.from_pretrained(model_name).to(device)
if rank == 0:
summary(model)
if distributed():
dist.barrier()
if world_size > 1:
model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True)
train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
max_sequence_length, random_sequence_length, epoch_size,
token_dropout, seed)
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1)
logdir = os.environ.get("OPENAI_LOGDIR", "logs")
os.makedirs(logdir, exist_ok=True)
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter(logdir) if rank == 0 else None
best_validation_accuracy = 0
for epoch in epoch_loop:
if world_size > 1:
train_loader.sampler.set_epoch(epoch)
validation_loader.sampler.set_epoch(epoch)
train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}')
validation_metrics = validate(model, device, validation_loader)
combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device)
combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"]
combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"]
combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"]
combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"]
if rank == 0:
for key, value in combined_metrics.items():
writer.add_scalar(key, value, global_step=epoch)
if combined_metrics["validation/accuracy"] > best_validation_accuracy:
best_validation_accuracy = combined_metrics["validation/accuracy"]
model_to_save = model.module if hasattr(model, 'module') else model
torch.save(dict(
epoch=epoch,
model_state_dict=model_to_save.state_dict(),
optimizer_state_dict=optimizer.state_dict(),
args=args
),
os.path.join(logdir, "best-model.pt")
)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--max-epochs', type=int, default=None)
parser.add_argument('--device', type=str, default=None)
parser.add_argument('--batch-size', type=int, default=24)
parser.add_argument('--max-sequence-length', type=int, default=128)
parser.add_argument('--random-sequence-length', action='store_true')
parser.add_argument('--epoch-size', type=int, default=None)
parser.add_argument('--seed', type=int, default=None)
parser.add_argument('--data-dir', type=str, default='data')
parser.add_argument('--real-dataset', type=str, default='webtext')
parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40')
parser.add_argument('--token-dropout', type=float, default=None)
parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base')
parser.add_argument('--learning-rate', type=float, default=2e-5)
parser.add_argument('--weight-decay', type=float, default=0)
args = parser.parse_args()
nproc = int(subprocess.check_output([sys.executable, '-c', "import torch;"
"print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"]))
if nproc > 1:
print(f'Launching {nproc} processes ...', file=sys.stderr)
os.environ["MASTER_ADDR"] = '127.0.0.1'
os.environ["MASTER_PORT"] = str(29500)
os.environ['WORLD_SIZE'] = str(nproc)
os.environ['OMP_NUM_THREAD'] = str(1)
subprocesses = []
for i in range(nproc):
os.environ['RANK'] = str(i)
os.environ['LOCAL_RANK'] = str(i)
process = Process(target=run, kwargs=vars(args))
process.start()
subprocesses.append(process)
for process in subprocesses:
process.join()
else:
run(**vars(args))
|