File size: 5,255 Bytes
18d926f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import os
import sys
from http.server import HTTPServer, SimpleHTTPRequestHandler
from multiprocessing import Process
import subprocess
from transformers import RobertaForSequenceClassification, RobertaTokenizer
import json
import fire
import torch
import re
from urllib.parse import urlparse, unquote, parse_qs, urlencode

model: RobertaForSequenceClassification = None
tokenizer: RobertaTokenizer = None
device: str = None

# Remove spaces query params from query
regex = r"__theme=(.+)"


def log(*args):
    print(f"[{os.environ.get('RANK', '')}]", *args, file=sys.stderr)


class RequestHandler(SimpleHTTPRequestHandler):

    def do_POST(self):
        self.begin_content('application/json,charset=UTF-8')

        content_length = int(self.headers['Content-Length'])
        if content_length > 0:
            post_data = self.rfile.read(content_length).decode('utf-8')
            try:
                post_data = json.loads(post_data)

                if 'text' not in post_data:
                    self.wfile.write(json.dumps({"error": "missing key 'text'"}).encode('utf-8'))
                else:
                    all_tokens, used_tokens, fake, real = self.infer(post_data['text'])

                    self.wfile.write(json.dumps(dict(
                        all_tokens=all_tokens,
                        used_tokens=used_tokens,
                        real_probability=real,
                        fake_probability=fake
                    )).encode('utf-8'))

            except Exception as e:
                self.wfile.write(json.dumps({"error": str(e)}).encode('utf-8'))

    def do_GET(self):
        query = urlparse(self.path).query
        query = re.sub(regex, "", query, 0, re.MULTILINE)
        query = unquote(query)

        if not query:
            self.begin_content('text/html')

            html = os.path.join(os.path.dirname(__file__), 'index.html')
            self.wfile.write(open(html).read().encode())
            return

        self.begin_content('application/json;charset=UTF-8')

        all_tokens, used_tokens, fake, real = self.infer(query)

        self.wfile.write(json.dumps(dict(
            all_tokens=all_tokens,
            used_tokens=used_tokens,
            real_probability=real,
            fake_probability=fake
        )).encode())

    def infer(self, query):
        tokens = tokenizer.encode(query)
        all_tokens = len(tokens)
        tokens = tokens[:tokenizer.max_len - 2]
        used_tokens = len(tokens)
        tokens = torch.tensor([tokenizer.bos_token_id] + tokens + [tokenizer.eos_token_id]).unsqueeze(0)
        mask = torch.ones_like(tokens)

        with torch.no_grad():
            logits = model(tokens.to(device), attention_mask=mask.to(device))[0]
            probs = logits.softmax(dim=-1)

        fake, real = probs.detach().cpu().flatten().numpy().tolist()

        return all_tokens, used_tokens, fake, real

    def begin_content(self, content_type):
        self.send_response(200)
        self.send_header('Content-Type', content_type)
        self.send_header('Access-Control-Allow-Origin', '*')
        self.end_headers()

    def log_message(self, format, *args):
        log(format % args)


def serve_forever(server, model, tokenizer, device):
    log('Process has started; loading the model ...')
    globals()['model'] = model.to(device)
    globals()['tokenizer'] = tokenizer
    globals()['device'] = device

    log(f'Ready to serve at http://localhost:{server.server_address[1]}')
    server.serve_forever()


def main(checkpoint, port=8080, device='cuda' if torch.cuda.is_available() else 'cpu'):
    if checkpoint.startswith('gs://'):
        print(f'Downloading {checkpoint}', file=sys.stderr)
        subprocess.check_output(['gsutil', 'cp', checkpoint, '.'])
        checkpoint = os.path.basename(checkpoint)
        assert os.path.isfile(checkpoint)

    print(f'Loading checkpoint from {checkpoint}')
    data = torch.load(checkpoint, map_location='cpu')

    model_name = 'roberta-large' if data['args']['large'] else 'roberta-base'
    model = RobertaForSequenceClassification.from_pretrained(model_name)
    tokenizer = RobertaTokenizer.from_pretrained(model_name)

    model.load_state_dict(data['model_state_dict'])
    model.eval()

    print(f'Starting HTTP server on port {port}', file=sys.stderr)
    server = HTTPServer(('0.0.0.0', port), RequestHandler)

    # avoid calling CUDA API before forking; doing so in a subprocess is fine.
    num_workers = int(subprocess.check_output([sys.executable, '-c', 'import torch; print(torch.cuda.device_count())']))

    if num_workers <= 1:
        serve_forever(server, model, tokenizer, device)
    else:
        print(f'Launching {num_workers} worker processes...')

        subprocesses = []

        for i in range(num_workers):
            os.environ['RANK'] = f'{i}'
            os.environ['CUDA_VISIBLE_DEVICES'] = f'{i}'
            process = Process(target=serve_forever, args=(server, model, tokenizer, device))
            process.start()
            subprocesses.append(process)

        del os.environ['RANK']
        del os.environ['CUDA_VISIBLE_DEVICES']

        for process in subprocesses:
            process.join()


if __name__ == '__main__':
    fire.Fire(main)