Spaces:
Sleeping
Sleeping
File size: 10,529 Bytes
ef3e88c 6d56d5a 796d285 6734637 6d56d5a 6734637 796d285 03f037b 796d285 6734637 6d56d5a 66c7a88 f6e532b dba807a 796d285 dba807a ef3e88c 796d285 ef3e88c dba807a f6e532b 796d285 6734637 6d56d5a 6734637 ef3e88c 6734637 dba807a 6734637 796d285 5dd224a 796d285 5dd224a 796d285 6734637 796d285 6734637 f6e532b 796d285 0135480 9ca63ee 796d285 9ca63ee 0135480 796d285 0135480 1058bb6 796d285 ef3e88c 983c23d 796d285 983c23d 796d285 983c23d 796d285 ef3e88c 796d285 983c23d 796d285 983c23d 796d285 983c23d 796d285 983c23d d023582 796d285 6734637 983c23d 6734637 dba807a 6734637 dba807a 796d285 dba807a 6734637 796d285 99c7d27 d20cd4b 796d285 d20cd4b 796d285 6734637 983c23d 796d285 6734637 796d285 6734637 f6e532b 4f67575 6734637 f6e532b 6734637 796d285 6734637 a5981be 6734637 a5981be 6734637 a5981be 6734637 a5981be 6734637 796d285 6734637 dba807a 6734637 f6e532b 6734637 796d285 6734637 796d285 6734637 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import random
import cv2
import gradio as gr
import numpy as np
import torch
# import spaces #[uncomment to use ZeroGPU]
from diffusers import (ControlNetModel, StableDiffusionControlNetPipeline,
StableDiffusionPipeline)
from peft import PeftModel
from PIL import Image
device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
# model_repo_id = "CompVis/stable-diffusion-v1-4"
# model_dropdown = ["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4"]
models = [
# "gstranger/kawaiicat-lora-1.4",
"CompVis/stable-diffusion-v1-4",
"stabilityai/sdxl-turbo",
"sd-legacy/stable-diffusion-v1-5",
]
controlnet_modes = ["canny", "Line Art"]
model_dropdown = [
"stabilityai/sdxl-turbo",
"CompVis/stable-diffusion-v1-4",
"sd-legacy/stable-diffusion-v1-5",
]
def process_control_image(image, mode="canny"):
if mode == "canny":
image = np.array(image)
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
canny = cv2.Canny(blurred, 50, 150)
return Image.fromarray(canny)
return image
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
MODEL_NAME = "CompVis/stable-diffusion-v1-4"
CKPT_DIR = "sd-14-lora-1000"
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
model_id,
prompt,
negative_prompt,
randomize_seed=False,
width=512,
height=512,
seed = 488,
guidance_scale=7,
num_inference_steps=50,
lora_enable=True,
lora_scale=0.8,
controlnet_enable=False,
control_mode="Line Art",
control_strength=0.8,
control_image=None,
ip_adapter_enable=False,
ip_adapter_scale=0.8,
ip_image=None,
torch_dtype=torch_dtype,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
else:
seed = 488
generator = torch.Generator().manual_seed(seed)
params = {'prompt': prompt,
'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator,
}
print("in infer 1")
print("controlnet_enable", controlnet_enable)
controlnet = None
if controlnet_enable and control_image is not None:
print("in controlnet_enable")
if control_mode == "canny":
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny",
torch_dtype=torch_dtype, cache_dir="./models_cache")
else:
control_mode == "Line Art"
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart",
torch_dtype=torch_dtype, cache_dir="./models_cache")
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None) #.to(device)
params['image'] = process_control_image(control_image, control_mode)
params['controlnet_conditioning_scale'] = float(control_strength)
else:
print("step: basic pipeline")
pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch_dtype,
safety_checker=None) #.to(device)
print("step: basic pipeline done!")
if lora_enable:
print("step: lora")
unet_sub_dir = os.path.join(CKPT_DIR, "unet")
text_encoder_sub_dir = os.path.join(CKPT_DIR, "text_encoder")
adapter_name="sd-14-lora"
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
pipe.text_encoder = PeftModel.from_pretrained(
pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
)
params['cross_attention_kwargs']={"scale": lora_scale}
print("step: lora done!")
if torch_dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
pipe.text_encoder.half()
if ip_adapter_enable:
print("step: ip_adapter_enable")
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.set_ip_adapter_scale(ip_adapter_scale)
params['ip_adapter_image'] = process_control_image(ip_image, "")
print("step: ip_adapter_enable done!")
# pipe.to(device)
print("step: start generating")
print(params)
image = pipe(**params
).images[0]
print("step: generating done!")
return image, seed
examples = [
"kawaiicat. The cat is sitting. The cat's tail is curled up at the end. The cat is pleased and is enjoying its time.",
"kawaiicat. The cat is sitting upright. The cat is eating some noodles with the chopsticks from a green bowl, which it's holding in his hands.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image kawaiicat Stickers")
with gr.Row():
# Dropdown to select the model from Hugging Face
model_id = gr.Dropdown(
label="Model",
choices=models,
value=models[0], # Default model
)
lora_scale = gr.Slider(
label="LORA Scale",
minimum=0,
maximum=1,
step=0.01,
value=0.8,
)
lora_enable = gr.Checkbox(label="Use LORA", value=True)
with gr.Column():
controlnet_enable = gr.Checkbox(label="Enable ControlNet", value=False)
with gr.Accordion("ControlNet Settings", visible=False) as controlnet_accordion:
control_mode = gr.Dropdown(controlnet_modes, label="Control Mode", value="canny")
control_strength = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Control Strength")
control_image = gr.Image(label="Control Image", type="pil")
ip_adapter_enable = gr.Checkbox(label="Enable IP-Adapter", value=False)
with gr.Accordion("IP-Adapter Settings", visible=False) as ipadapter_accordion:
ip_adapter_scale = gr.Slider(0, 1, value=0.5, label="IP-Adapter Scale")
ip_image = gr.Image(label="Reference Image", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
value="kawaiicat. The cat is having fun, is smiling."
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter your negative prompt",
value="bad anatomy, crop image, bad face of the cat"
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
value="bad anatomy, crop image, bad face of the cat"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=10.0, # Replace with defaults that work for your model
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=50, # Replace with defaults that work for your model
)
gr.Examples(examples=examples, inputs=[prompt])
controlnet_enable.change(
lambda x: gr.update(visible=x),
controlnet_enable,
controlnet_accordion
)
ip_adapter_enable.change(
lambda x: gr.update(visible=x),
ip_adapter_enable,
ipadapter_accordion
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
model_id,
prompt,
negative_prompt,
randomize_seed,
width,
height,
seed,
guidance_scale,
num_inference_steps,
lora_enable, lora_scale,
controlnet_enable, control_mode, control_strength, control_image,
ip_adapter_enable, ip_adapter_scale, ip_image
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()
|