File size: 10,529 Bytes
ef3e88c
6d56d5a
 
796d285
6734637
 
6d56d5a
6734637
796d285
 
03f037b
796d285
6734637
 
6d56d5a
66c7a88
 
f6e532b
dba807a
796d285
dba807a
 
ef3e88c
 
796d285
ef3e88c
 
 
 
 
dba807a
f6e532b
796d285
 
 
 
 
 
 
 
6734637
 
 
 
 
 
6d56d5a
 
6734637
 
 
ef3e88c
 
 
 
6734637
 
 
dba807a
6734637
 
796d285
 
 
5dd224a
 
 
 
796d285
5dd224a
796d285
 
 
 
 
 
 
 
 
 
 
 
6734637
 
 
 
796d285
 
6734637
 
f6e532b
796d285
 
 
 
 
 
 
 
0135480
 
9ca63ee
796d285
9ca63ee
 
0135480
796d285
 
 
0135480
1058bb6
 
796d285
 
 
 
 
 
 
 
 
 
 
ef3e88c
 
983c23d
796d285
 
 
983c23d
796d285
 
983c23d
796d285
 
 
 
 
 
 
ef3e88c
796d285
983c23d
796d285
 
 
 
 
 
983c23d
796d285
 
 
983c23d
796d285
 
 
 
983c23d
d023582
796d285
6734637
983c23d
6734637
 
 
 
dba807a
 
6734637
 
 
 
 
 
 
 
 
 
 
dba807a
 
 
 
 
 
 
 
 
 
 
 
 
 
796d285
dba807a
6734637
796d285
 
99c7d27
d20cd4b
796d285
 
 
 
 
d20cd4b
796d285
 
 
 
6734637
 
 
 
 
 
 
983c23d
796d285
 
 
 
 
 
 
6734637
 
796d285
6734637
 
 
 
 
 
 
 
 
f6e532b
4f67575
6734637
 
 
 
 
 
 
f6e532b
6734637
 
796d285
6734637
 
 
 
 
 
 
a5981be
6734637
 
 
 
 
 
 
a5981be
6734637
 
 
 
 
 
 
 
a5981be
6734637
 
 
 
 
 
 
a5981be
6734637
 
 
796d285
 
 
 
 
 
 
 
 
 
 
 
6734637
 
 
 
dba807a
6734637
 
 
 
 
f6e532b
6734637
 
796d285
 
 
 
6734637
 
 
 
796d285
6734637
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import os
import random

import cv2
import gradio as gr
import numpy as np
import torch
# import spaces #[uncomment to use ZeroGPU]
from diffusers import (ControlNetModel, StableDiffusionControlNetPipeline,
                       StableDiffusionPipeline)
from peft import PeftModel
from PIL import Image

device = "cuda" if torch.cuda.is_available() else "cpu"
# model_repo_id = "stabilityai/sdxl-turbo"  # Replace to the model you would like to use
# model_repo_id = "CompVis/stable-diffusion-v1-4"
# model_dropdown = ["stabilityai/sdxl-turbo", "CompVis/stable-diffusion-v1-4"]

models = [
    # "gstranger/kawaiicat-lora-1.4",
    "CompVis/stable-diffusion-v1-4",
    "stabilityai/sdxl-turbo",
    "sd-legacy/stable-diffusion-v1-5",
]
controlnet_modes = ["canny", "Line Art"]

model_dropdown = [
    "stabilityai/sdxl-turbo",
    "CompVis/stable-diffusion-v1-4",
    "sd-legacy/stable-diffusion-v1-5",
]

def process_control_image(image, mode="canny"):
  if mode == "canny":
    image = np.array(image)
    gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)
    canny = cv2.Canny(blurred, 50, 150)
    return Image.fromarray(canny)
  return image

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
# pipe = pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
MODEL_NAME = "CompVis/stable-diffusion-v1-4"
CKPT_DIR = "sd-14-lora-1000"



# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    model_id,
    prompt,
    negative_prompt,
    randomize_seed=False,
    width=512,
    height=512,
    seed = 488,
    guidance_scale=7,
    num_inference_steps=50,

    lora_enable=True,
    lora_scale=0.8,
    
    controlnet_enable=False,
    control_mode="Line Art",
    control_strength=0.8,
    control_image=None,

    ip_adapter_enable=False,
    ip_adapter_scale=0.8,
    ip_image=None,


    torch_dtype=torch_dtype,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    else:
        seed = 488

    generator = torch.Generator().manual_seed(seed)

    params = {'prompt': prompt,
            'negative_prompt': negative_prompt,
            'guidance_scale': guidance_scale,
            'num_inference_steps': num_inference_steps,
            'width': width,
            'height': height,
            'generator': generator,
            }
    
    print("in infer 1")
    print("controlnet_enable", controlnet_enable)

    controlnet = None
    if controlnet_enable and control_image is not None:
        print("in controlnet_enable")
        if control_mode == "canny":
            controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", 
                                                         torch_dtype=torch_dtype, cache_dir="./models_cache")
            
        else: 
            control_mode == "Line Art"
            controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_lineart", 
                                                         torch_dtype=torch_dtype, cache_dir="./models_cache")
            
        pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, 
                                                                 controlnet=controlnet,
                                                                 torch_dtype=torch_dtype, 
                                                                 safety_checker=None) #.to(device)
        
        params['image'] = process_control_image(control_image, control_mode)
        params['controlnet_conditioning_scale'] = float(control_strength)


    else:
        print("step: basic pipeline")
        pipe = StableDiffusionPipeline.from_pretrained(model_id, 
                                                       torch_dtype=torch_dtype, 
                                                       safety_checker=None) #.to(device)
        print("step: basic pipeline done!")

    if lora_enable:
        print("step: lora")
        unet_sub_dir = os.path.join(CKPT_DIR, "unet")
        text_encoder_sub_dir = os.path.join(CKPT_DIR, "text_encoder")
        adapter_name="sd-14-lora"

        pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
        pipe.text_encoder = PeftModel.from_pretrained(
            pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name
        )
        params['cross_attention_kwargs']={"scale": lora_scale}
        print("step: lora done!")

    if torch_dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        pipe.text_encoder.half()

    if ip_adapter_enable:
        print("step: ip_adapter_enable")
        pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
        pipe.set_ip_adapter_scale(ip_adapter_scale)
        params['ip_adapter_image'] = process_control_image(ip_image, "")
        print("step: ip_adapter_enable done!")


    # pipe.to(device)

    print("step: start generating")
    print(params)
    image = pipe(**params
    ).images[0]
    print("step: generating done!")
    return image, seed


examples = [
    "kawaiicat. The cat is sitting. The cat's tail is curled up at the end. The cat is pleased and is enjoying its time.",
    "kawaiicat. The cat is sitting upright. The cat is eating some noodles with the chopsticks from a green bowl, which it's holding in his hands.",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image kawaiicat Stickers")
        with gr.Row():
            # Dropdown to select the model from Hugging Face
            model_id = gr.Dropdown(
                label="Model",
                choices=models,
                value=models[0],  # Default model
            )

        lora_scale = gr.Slider(
            label="LORA Scale",
            minimum=0,
            maximum=1,
            step=0.01,
            value=0.8,
        )

        lora_enable = gr.Checkbox(label="Use LORA", value=True)

        with gr.Column():
            controlnet_enable = gr.Checkbox(label="Enable ControlNet", value=False)
            with gr.Accordion("ControlNet Settings", visible=False) as controlnet_accordion:
                control_mode = gr.Dropdown(controlnet_modes, label="Control Mode", value="canny")
                control_strength = gr.Slider(0.0, 2.0, value=1.0, step=0.1, label="Control Strength")
                control_image = gr.Image(label="Control Image", type="pil")

            ip_adapter_enable = gr.Checkbox(label="Enable IP-Adapter", value=False)
            with gr.Accordion("IP-Adapter Settings", visible=False) as ipadapter_accordion:
                ip_adapter_scale = gr.Slider(0, 1, value=0.5, label="IP-Adapter Scale")
                ip_image = gr.Image(label="Reference Image", type="pil")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
                value="kawaiicat. The cat is having fun, is smiling."
            )        
            
            negative_prompt = gr.Textbox(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter your negative prompt",
                value="bad anatomy, crop image, bad face of the cat"
            )


            run_button = gr.Button("Run", scale=0, variant="primary")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=True,
                value="bad anatomy, crop image, bad face of the cat"
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=False)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=10.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=50,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])

        controlnet_enable.change(
            lambda x: gr.update(visible=x), 
            controlnet_enable, 
            controlnet_accordion
        )
        ip_adapter_enable.change(
            lambda x: gr.update(visible=x), 
            ip_adapter_enable, 
            ipadapter_accordion
        )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            model_id,
            prompt,
            negative_prompt,
            randomize_seed,
            width,
            height,
            seed,
            guidance_scale,
            num_inference_steps,
            lora_enable, lora_scale,
            controlnet_enable, control_mode, control_strength, control_image,
            ip_adapter_enable, ip_adapter_scale, ip_image

        ],
        outputs=[result, seed],
    )


if __name__ == "__main__":
    demo.launch()