File size: 16,155 Bytes
9652fe2
df52f66
b4cb26c
df52f66
9652fe2
 
 
df52f66
9652fe2
8df5287
df52f66
 
 
9652fe2
df52f66
b4cb26c
df52f66
9652fe2
df52f66
9652fe2
 
df52f66
 
 
 
9652fe2
 
df52f66
9652fe2
df52f66
9652fe2
df52f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9652fe2
 
 
 
 
 
 
 
df52f66
9652fe2
 
df52f66
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
9652fe2
 
df52f66
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
 
 
 
 
 
 
 
9652fe2
df52f66
 
 
 
 
 
9652fe2
 
df52f66
 
 
 
 
 
 
 
 
 
b4cb26c
df52f66
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
b4cb26c
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
 
 
 
 
9652fe2
 
 
 
 
b4cb26c
 
 
 
 
 
 
 
 
 
 
 
 
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
df52f66
9652fe2
 
 
df52f66
 
 
9652fe2
 
 
 
 
df52f66
 
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abc7c5c
9652fe2
 
 
 
 
 
 
 
 
 
 
df52f66
9652fe2
 
 
df52f66
 
 
 
 
9652fe2
 
df52f66
9652fe2
 
df52f66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9652fe2
 
 
 
 
 
 
df52f66
 
 
 
 
 
 
 
 
 
 
 
 
 
9652fe2
df52f66
 
 
 
 
 
 
 
9652fe2
df52f66
 
 
 
 
 
 
 
 
 
 
 
 
8df5287
 
 
 
 
df52f66
 
 
 
 
 
 
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
 
 
9652fe2
 
 
df52f66
 
 
9652fe2
df52f66
 
 
9652fe2
df52f66
 
 
9652fe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df52f66
9652fe2
 
df52f66
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import re
import threading

import bm25s
import gradio as gr
import gradio_iframe
import spaces
from bm25s.hf import BM25HF
from citations import inseq_citation, inseq_xai_citation, lxt_citation, mirage_citation, pecore_citation
from examples import examples
from lxt.functional import add2, mul2, softmax
from lxt.models.llama import LlamaForCausalLM, attnlrp
from rerankers import Reranker
from style import custom_css
from tqdm import tqdm
from transformers import AutoTokenizer

from inseq import load_model, register_step_function
from inseq.attr import StepFunctionArgs
from inseq.commands.attribute_context import visualize_attribute_context
from inseq.commands.attribute_context.attribute_context import (
    AttributeContextArgs,
    attribute_context_with_model,
)
from inseq.utils.contrast_utils import _setup_contrast_args

model = None
model_id = "HuggingFaceTB/SmolLM-360M-Instruct"
ranker = Reranker("answerdotai/answerai-colbert-small-v1", model_type="colbert")
retriever = BM25HF.load_from_hub("xhluca/bm25s-nq-index", load_corpus=True, mmap=True)

# Model registry to store loaded models
model_registry = {}


def get_model(model_size):
    model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
    if model_id not in model_registry:
        hf_model = LlamaForCausalLM.from_pretrained(model_id)
        tokenizer = AutoTokenizer.from_pretrained(model_id)
        attnlrp.register(hf_model)
        model = load_model(hf_model, "saliency", tokenizer=tokenizer)
        model.bos_token = "<|endoftext|>"
        model.bos_token_id = 0
        model_registry[model_id] = model
    return model_registry[model_id]


def lxt_probability_fn(args: StepFunctionArgs):
    logits = args.attribution_model.output2logits(args.forward_output)
    target_ids = args.target_ids.reshape(logits.shape[0], 1).to(logits.device)
    logits = softmax(logits, dim=-1)
    return logits.gather(-1, target_ids).squeeze(-1)


def lxt_contrast_prob_fn(
    args: StepFunctionArgs,
    contrast_sources=None,
    contrast_targets=None,
    contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
    contrast_force_inputs: bool = False,
    skip_special_tokens: bool = False,
):
    c_args = _setup_contrast_args(
        args,
        contrast_sources=contrast_sources,
        contrast_targets=contrast_targets,
        contrast_targets_alignments=contrast_targets_alignments,
        contrast_force_inputs=contrast_force_inputs,
        skip_special_tokens=skip_special_tokens,
    )
    return lxt_probability_fn(c_args)


def lxt_contrast_prob_diff_fn(
    args: StepFunctionArgs,
    contrast_sources=None,
    contrast_targets=None,
    contrast_targets_alignments: list[list[tuple[int, int]]] | None = None,
    contrast_force_inputs: bool = False,
    skip_special_tokens: bool = False,
):
    model_probs = lxt_probability_fn(args)
    contrast_probs = lxt_contrast_prob_fn(
        args=args,
        contrast_sources=contrast_sources,
        contrast_targets=contrast_targets,
        contrast_targets_alignments=contrast_targets_alignments,
        contrast_force_inputs=contrast_force_inputs,
        skip_special_tokens=skip_special_tokens,
    ).to(model_probs.device)
    return add2(model_probs, mul2(contrast_probs, -1))


def set_interactive_settings(rag_setting, retrieve_k, top_k, custom_context):
    if rag_setting in ("Retrieve with BM25", "Rerank with ColBERT"):
        return (
            gr.Slider(interactive=True),
            gr.Slider(interactive=True),
            gr.Textbox(
                placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
                interactive=False,
            ),
        )
    elif rag_setting == "Use Custom Context":
        return (
            gr.Slider(interactive=False),
            gr.Slider(interactive=False),
            gr.Textbox(placeholder="Insert a custom context...", interactive=True),
        )


@spaces.GPU()
def generate(
    query,
    max_new_tokens,
    top_p,
    temperature,
    retrieve_k,
    top_k,
    rag_setting,
    custom_context,
    model_size,
    progress=gr.Progress(track_tqdm=True),
):
    global model, model_id
    if rag_setting == "Use Custom Context":
        docs = custom_context.split("\n\n")
        progress(0.1, desc="Using custom context...")
    else:
        if not query:
            raise gr.Error("Please enter a query.")
        progress(0, desc="Retrieving with BM25...")
        q = bm25s.tokenize(query)
        results = retriever.retrieve(q, k=retrieve_k)
        if rag_setting == "Rerank with ColBERT":
            progress(0.1, desc="Reranking with ColBERT...")
            docs = [x["text"] for x in results.documents[0]]
            out = ranker.rank(query=query, docs=docs)
            docs = [out.results[i].document.text for i in range(top_k)]
        else:
            docs = [results.documents[0][i]["text"] for i in range(top_k)]
        docs = [re.sub(r"\[\d+\]", "", doc) for doc in docs]
    curr_model_id = f"HuggingFaceTB/SmolLM-{model_size}-Instruct"
    if model is None or model.model_name != curr_model_id:
        progress(0.2, desc="Loading model...")
        model = get_model(model_size)
    estimated_time = 20
    tstep = 1
    lm_rag_prompting_example = AttributeContextArgs(
        model_name_or_path=model_id,
        input_context_text="\n\n".join(docs),
        input_current_text=query,
        output_template="{current}",
        attributed_fn="lxt_contrast_prob_diff",
        input_template="<|im_start|>user\n### Context\n{context}\n\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
        contextless_input_current_text="<|im_start|>user\n### Query\n{current}<|im_end|>\n<|im_start|>assistant\n",
        attribution_method="saliency",
        show_viz=False,
        show_intermediate_outputs=False,
        context_sensitivity_std_threshold=1,
        decoder_input_output_separator=" ",
        special_tokens_to_keep=["<|im_start|>", "<|endoftext|>"],
        generation_kwargs={
            "max_new_tokens": max_new_tokens,
            "top_p": top_p,
            "temperature": temperature,
        },
        attribution_aggregators=["sum"],
        rescale_attributions=True,
        save_path=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
        viz_path=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
    )

    ret = [None]

    def run_attribute_context():
        ret[0] = attribute_context_with_model(lm_rag_prompting_example, model)

    thread = threading.Thread(target=run_attribute_context)
    pbar = tqdm(total=estimated_time, desc="Attributing with LXT...")
    thread.start()
    while thread.is_alive():
        thread.join(timeout=tstep)
        pbar.update(tstep)
    pbar.close()
    out = ret[0]
    html = visualize_attribute_context(out, show_viz=False, return_html=True)
    return [
        gradio_iframe.iFrame(html, height=500, visible=True),
        gr.DownloadButton(
            label="πŸ“‚ Download output",
            value=os.path.join(os.path.dirname(__file__), "outputs/output.json"),
            visible=True,
        ),
        gr.DownloadButton(
            label="πŸ” Download HTML",
            value=os.path.join(os.path.dirname(__file__), "outputs/output.html"),
            visible=True,
        ),
    ]


register_step_function(
    lxt_contrast_prob_diff_fn, "lxt_contrast_prob_diff", overwrite=True
)


with gr.Blocks(css=custom_css) as demo:
    with gr.Row():
        with gr.Column(min_width=500):
            gr.HTML(
                '<h1><img src="file/img/mirage_logo_white_contour.png" width=300px /></h1>'
            )
    text = gr.Markdown(
        "This demo showcases an end-to-end usage of model internals for RAG answer attribution with the <a href='https://openreview.net/forum?id=XTHfNGI3zT' target='_blank'>PECoRe</a> framework, as described in our <a href='https://arxiv.org/abs/2406.13663' target='_blank'>MIRAGE</a> paper.<br>"
        "Insert a query to retrieve relevant contexts, generate an answer and attribute its context-sensitive components. An interactive <a href='https://github.com/google-deepmind/treescope' target='_blank'>Treescope</a> visualization will appear in the green square.<br>"
        "πŸ“‹ <i>Retrieval is performed on <a href='https://huggingface.co/datasets/google-research-datasets/natural_questions' target='_blank'>Natural Questions</a> using <a href='https://github.com/xhluca/bm25s' target='_blank'>BM25S</a>, with optional reranking via <a href='https://huggingface.co/answerdotai/answerai-colbert-small-v1' target='_blank'>ColBERT</a>."
        " <a href='https://huggingface.co/blog/smollm' target='_blank'>SmolLM</a> models are used for generation, while <a href='https://github.com/inseq-team/inseq' target='_blank'>Inseq</a> and <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'>LXT</a> are used for attribution.</i><br>"
        "➑️ <i>For more details, see also our <a href='https://huggingface.co/spaces/gsarti/pecore' target='_blank'>PECoRe Demo</a>",
    )
    with gr.Row():
        with gr.Column():
            query = gr.Textbox(
                placeholder="Insert a query for the language model...",
                label="Model query",
                interactive=True,
                lines=2,
            )
            btn = gr.Button("Submit", variant="primary")
            attribute_input_examples = gr.Examples(
                examples,
                inputs=[query],
                examples_per_page=2,
            )
            with gr.Accordion("βš™οΈ Parameters", open=False):
                with gr.Row():
                    model_size = gr.Radio(
                        ["135M", "360M", "1.7B"],
                        value="360M",
                        label="Model size",
                        interactive=True,
                    )
                with gr.Row():
                    rag_setting = gr.Radio(
                        [
                            "Retrieve with BM25",
                            "Rerank with ColBERT",
                            "Use Custom Context",
                        ],
                        value="Rerank with ColBERT",
                        label="Mode",
                        interactive=True,
                    )
                with gr.Row():
                    retrieve_k = gr.Slider(
                        1,
                        500,
                        value=100,
                        step=1,
                        label="# Docs to Retrieve",
                        interactive=True,
                    )
                    top_k = gr.Slider(
                        1,
                        10,
                        value=3,
                        step=1,
                        label="# Docs in Context",
                        interactive=True,
                    )
                custom_context = gr.Textbox(
                    placeholder="Context will be retrieved automatically. Change mode to 'Use Custom Context' to specify your own.",
                    label="Custom context",
                    interactive=False,
                    lines=4,
                )
                with gr.Row():
                    max_new_tokens = gr.Slider(
                        0,
                        500,
                        value=50,
                        step=5.0,
                        label="Max new tokens",
                        interactive=True,
                    )
                    top_p = gr.Slider(
                        0, 1, value=1, step=0.01, label="Top P", interactive=True
                    )
                    temperature = gr.Slider(
                        0, 1, value=0, step=0.01, label="Temperature", interactive=True
                    )
            with gr.Accordion("πŸ“ Citation", open=False):
                gr.Markdown(
                    "Using PECoRe for model internals-based RAG answer attribution is discussed in:"
                )
                gr.Code(
                    mirage_citation,
                    interactive=False,
                    label="MIRAGE (Qi, Sarti et al., 2024)",
                )
                gr.Markdown("To refer to the original PECoRe paper, cite:")
                gr.Code(
                    pecore_citation,
                    interactive=False,
                    label="PECoRe (Sarti et al., 2024)",
                )
                gr.Markdown(
                    'The Inseq implementation used in this work (<a href="https://inseq.org/en/latest/main_classes/cli.html#attribute-context"><code>inseq attribute-context</code></a>, including this demo) can be cited with:'
                )
                gr.Code(
                    inseq_citation,
                    interactive=False,
                    label="Inseq (Sarti et al., 2023)",
                )
                gr.Code(
                    inseq_xai_citation,
                    interactive=False,
                    label="Inseq v0.6 (Sarti et al., 2024)"
                )
                gr.Markdown(
                    "The AttnLRP attribution method used in this demo via the LXT library can be cited with:"
                )
                gr.Code(
                    lxt_citation,
                    interactive=False,
                    label="AttnLRP (Achtibat et al., 2024)",
                )
        with gr.Column():
            attribute_context_out = gradio_iframe.iFrame(height=400, visible=True)
            with gr.Row(equal_height=True):
                download_output_file_button = gr.DownloadButton(
                    "πŸ“‚ Download output",
                    visible=False,
                )
                download_output_html_button = gr.DownloadButton(
                    "πŸ” Download HTML",
                    visible=False,
                    value=os.path.join(
                        os.path.dirname(__file__), "outputs/output.html"
                    ),
                )
    with gr.Row(elem_classes="footer-container"):
        with gr.Column():
            gr.Markdown(
                """<div class="footer-custom-block"><b>Powered by</b> <a href='https://github.com/inseq-team/inseq' target='_blank'><img src="file/img/inseq_logo_white_contour.png" width=150px /></a> <a href='https://github.com/rachtibat/LRP-eXplains-Transformers' target='_blank'><img src="file/img/lxt_logo.png" width=150px /></a></div>"""
            )
        with gr.Column():
            with gr.Row(elem_classes="footer-custom-block"):
                with gr.Column(scale=0.30, min_width=150):
                    gr.Markdown(
                        """<b>Built by <a href="https://gsarti.com" target="_blank">Gabriele Sarti</a><br> with the support of</b>"""
                    )
                with gr.Column(scale=0.30, min_width=120):
                    gr.Markdown(
                        """<a href='https://www.rug.nl/research/clcg/research/cl/' target='_blank'><img src="file/img/rug_logo_white_contour.png" width=170px /></a>"""
                    )
                with gr.Column(scale=0.30, min_width=120):
                    gr.Markdown(
                        """<a href='https://projects.illc.uva.nl/indeep/' target='_blank'><img src="file/img/indeep_logo_white_contour.png" width=100px /></a>"""
                    )

    rag_setting.change(
        fn=set_interactive_settings,
        inputs=[rag_setting, retrieve_k, top_k, custom_context],
        outputs=[retrieve_k, top_k, custom_context],
    )

    btn.click(
        fn=generate,
        inputs=[
            query,
            max_new_tokens,
            top_p,
            temperature,
            retrieve_k,
            top_k,
            rag_setting,
            custom_context,
            model_size,
        ],
        outputs=[
            attribute_context_out,
            download_output_file_button,
            download_output_html_button,
        ],
    )

demo.queue(api_open=False, max_size=20).launch(
    allowed_paths=["img/", "outputs/"], show_api=False
)