File size: 12,047 Bytes
670bdcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
# -*- coding: utf-8 -*-
"""
@File : visualizer.py
@Time : 2022/04/05 11:39:33
@Author : Shilong Liu
@Contact : slongliu86@gmail.com
"""
import datetime
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import torch
from matplotlib import transforms
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon
from pycocotools import mask as maskUtils
def renorm(
img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) -> torch.FloatTensor:
# img: tensor(3,H,W) or tensor(B,3,H,W)
# return: same as img
assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
if img.dim() == 3:
assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
img.size(0),
str(img.size()),
)
img_perm = img.permute(1, 2, 0)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(2, 0, 1)
else: # img.dim() == 4
assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
img.size(1),
str(img.size()),
)
img_perm = img.permute(0, 2, 3, 1)
mean = torch.Tensor(mean)
std = torch.Tensor(std)
img_res = img_perm * std + mean
return img_res.permute(0, 3, 1, 2)
class ColorMap:
def __init__(self, basergb=[255, 255, 0]):
self.basergb = np.array(basergb)
def __call__(self, attnmap):
# attnmap: h, w. np.uint8.
# return: h, w, 4. np.uint8.
assert attnmap.dtype == np.uint8
h, w = attnmap.shape
res = self.basergb.copy()
res = res[None][None].repeat(h, 0).repeat(w, 1) # h, w, 3
attn1 = attnmap.copy()[..., None] # h, w, 1
res = np.concatenate((res, attn1), axis=-1).astype(np.uint8)
return res
def rainbow_text(x, y, ls, lc, **kw):
"""
Take a list of strings ``ls`` and colors ``lc`` and place them next to each
other, with text ls[i] being shown in color lc[i].
This example shows how to do both vertical and horizontal text, and will
pass all keyword arguments to plt.text, so you can set the font size,
family, etc.
"""
t = plt.gca().transData
fig = plt.gcf()
plt.show()
# horizontal version
for s, c in zip(ls, lc):
text = plt.text(x, y, " " + s + " ", color=c, transform=t, **kw)
text.draw(fig.canvas.get_renderer())
ex = text.get_window_extent()
t = transforms.offset_copy(text._transform, x=ex.width, units="dots")
# #vertical version
# for s,c in zip(ls,lc):
# text = plt.text(x,y," "+s+" ",color=c, transform=t,
# rotation=90,va='bottom',ha='center',**kw)
# text.draw(fig.canvas.get_renderer())
# ex = text.get_window_extent()
# t = transforms.offset_copy(text._transform, y=ex.height, units='dots')
class COCOVisualizer:
def __init__(self, coco=None, tokenlizer=None) -> None:
self.coco = coco
def visualize(self, img, tgt, caption=None, dpi=180, savedir="vis"):
"""
img: tensor(3, H, W)
tgt: make sure they are all on cpu.
must have items: 'image_id', 'boxes', 'size'
"""
plt.figure(dpi=dpi)
plt.rcParams["font.size"] = "5"
ax = plt.gca()
img = renorm(img).permute(1, 2, 0)
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
ax.imshow(img)
self.addtgt(tgt)
if tgt is None:
image_id = 0
elif "image_id" not in tgt:
image_id = 0
else:
image_id = tgt["image_id"]
if caption is None:
savename = "{}/{}-{}.png".format(
savedir, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
)
else:
savename = "{}/{}-{}-{}.png".format(
savedir, caption, int(image_id), str(datetime.datetime.now()).replace(" ", "-")
)
print("savename: {}".format(savename))
os.makedirs(os.path.dirname(savename), exist_ok=True)
plt.savefig(savename)
plt.close()
def addtgt(self, tgt):
""" """
if tgt is None or not "boxes" in tgt:
ax = plt.gca()
if "caption" in tgt:
ax.set_title(tgt["caption"], wrap=True)
ax.set_axis_off()
return
ax = plt.gca()
H, W = tgt["size"]
numbox = tgt["boxes"].shape[0]
color = []
polygons = []
boxes = []
for box in tgt["boxes"].cpu():
unnormbbox = box * torch.Tensor([W, H, W, H])
unnormbbox[:2] -= unnormbbox[2:] / 2
[bbox_x, bbox_y, bbox_w, bbox_h] = unnormbbox.tolist()
boxes.append([bbox_x, bbox_y, bbox_w, bbox_h])
poly = [
[bbox_x, bbox_y],
[bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y],
]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
color.append(c)
p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.1)
ax.add_collection(p)
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
ax.add_collection(p)
if "strings_positive" in tgt and len(tgt["strings_positive"]) > 0:
assert (
len(tgt["strings_positive"]) == numbox
), f"{len(tgt['strings_positive'])} = {numbox}, "
for idx, strlist in enumerate(tgt["strings_positive"]):
cate_id = int(tgt["labels"][idx])
_string = str(cate_id) + ":" + " ".join(strlist)
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
ax.text(
bbox_x,
bbox_y,
_string,
color="black",
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
)
if "box_label" in tgt:
assert len(tgt["box_label"]) == numbox, f"{len(tgt['box_label'])} = {numbox}, "
for idx, bl in enumerate(tgt["box_label"]):
_string = str(bl)
bbox_x, bbox_y, bbox_w, bbox_h = boxes[idx]
# ax.text(bbox_x, bbox_y, _string, color='black', bbox={'facecolor': 'yellow', 'alpha': 1.0, 'pad': 1})
ax.text(
bbox_x,
bbox_y,
_string,
color="black",
bbox={"facecolor": color[idx], "alpha": 0.6, "pad": 1},
)
if "caption" in tgt:
ax.set_title(tgt["caption"], wrap=True)
# plt.figure()
# rainbow_text(0.0,0.0,"all unicorns poop rainbows ! ! !".split(),
# ['red', 'orange', 'brown', 'green', 'blue', 'purple', 'black'])
if "attn" in tgt:
# if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
# import ipdb; ipdb.set_trace()
if isinstance(tgt["attn"], tuple):
tgt["attn"] = [tgt["attn"]]
for item in tgt["attn"]:
attn_map, basergb = item
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min() + 1e-3)
attn_map = (attn_map * 255).astype(np.uint8)
cm = ColorMap(basergb)
heatmap = cm(attn_map)
ax.imshow(heatmap)
ax.set_axis_off()
def showAnns(self, anns, draw_bbox=False):
"""
Display the specified annotations.
:param anns (array of object): annotations to display
:return: None
"""
if len(anns) == 0:
return 0
if "segmentation" in anns[0] or "keypoints" in anns[0]:
datasetType = "instances"
elif "caption" in anns[0]:
datasetType = "captions"
else:
raise Exception("datasetType not supported")
if datasetType == "instances":
ax = plt.gca()
ax.set_autoscale_on(False)
polygons = []
color = []
for ann in anns:
c = (np.random.random((1, 3)) * 0.6 + 0.4).tolist()[0]
if "segmentation" in ann:
if type(ann["segmentation"]) == list:
# polygon
for seg in ann["segmentation"]:
poly = np.array(seg).reshape((int(len(seg) / 2), 2))
polygons.append(Polygon(poly))
color.append(c)
else:
# mask
t = self.imgs[ann["image_id"]]
if type(ann["segmentation"]["counts"]) == list:
rle = maskUtils.frPyObjects(
[ann["segmentation"]], t["height"], t["width"]
)
else:
rle = [ann["segmentation"]]
m = maskUtils.decode(rle)
img = np.ones((m.shape[0], m.shape[1], 3))
if ann["iscrowd"] == 1:
color_mask = np.array([2.0, 166.0, 101.0]) / 255
if ann["iscrowd"] == 0:
color_mask = np.random.random((1, 3)).tolist()[0]
for i in range(3):
img[:, :, i] = color_mask[i]
ax.imshow(np.dstack((img, m * 0.5)))
if "keypoints" in ann and type(ann["keypoints"]) == list:
# turn skeleton into zero-based index
sks = np.array(self.loadCats(ann["category_id"])[0]["skeleton"]) - 1
kp = np.array(ann["keypoints"])
x = kp[0::3]
y = kp[1::3]
v = kp[2::3]
for sk in sks:
if np.all(v[sk] > 0):
plt.plot(x[sk], y[sk], linewidth=3, color=c)
plt.plot(
x[v > 0],
y[v > 0],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor="k",
markeredgewidth=2,
)
plt.plot(
x[v > 1],
y[v > 1],
"o",
markersize=8,
markerfacecolor=c,
markeredgecolor=c,
markeredgewidth=2,
)
if draw_bbox:
[bbox_x, bbox_y, bbox_w, bbox_h] = ann["bbox"]
poly = [
[bbox_x, bbox_y],
[bbox_x, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y + bbox_h],
[bbox_x + bbox_w, bbox_y],
]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
color.append(c)
# p = PatchCollection(polygons, facecolor=color, linewidths=0, alpha=0.4)
# ax.add_collection(p)
p = PatchCollection(polygons, facecolor="none", edgecolors=color, linewidths=2)
ax.add_collection(p)
elif datasetType == "captions":
for ann in anns:
print(ann["caption"])
|