File size: 17,717 Bytes
670bdcf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import argparse
import json
import warnings
from collections import OrderedDict
from copy import deepcopy
from typing import Any, Dict, List

import numpy as np
import torch
from transformers import AutoTokenizer

from groundingdino.util.slconfig import SLConfig


def slprint(x, name="x"):
    if isinstance(x, (torch.Tensor, np.ndarray)):
        print(f"{name}.shape:", x.shape)
    elif isinstance(x, (tuple, list)):
        print("type x:", type(x))
        for i in range(min(10, len(x))):
            slprint(x[i], f"{name}[{i}]")
    elif isinstance(x, dict):
        for k, v in x.items():
            slprint(v, f"{name}[{k}]")
    else:
        print(f"{name}.type:", type(x))


def clean_state_dict(state_dict):
    new_state_dict = OrderedDict()
    for k, v in state_dict.items():
        if k[:7] == "module.":
            k = k[7:]  # remove `module.`
        new_state_dict[k] = v
    return new_state_dict


def renorm(
    img: torch.FloatTensor, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
) -> torch.FloatTensor:
    # img: tensor(3,H,W) or tensor(B,3,H,W)
    # return: same as img
    assert img.dim() == 3 or img.dim() == 4, "img.dim() should be 3 or 4 but %d" % img.dim()
    if img.dim() == 3:
        assert img.size(0) == 3, 'img.size(0) shoule be 3 but "%d". (%s)' % (
            img.size(0),
            str(img.size()),
        )
        img_perm = img.permute(1, 2, 0)
        mean = torch.Tensor(mean)
        std = torch.Tensor(std)
        img_res = img_perm * std + mean
        return img_res.permute(2, 0, 1)
    else:  # img.dim() == 4
        assert img.size(1) == 3, 'img.size(1) shoule be 3 but "%d". (%s)' % (
            img.size(1),
            str(img.size()),
        )
        img_perm = img.permute(0, 2, 3, 1)
        mean = torch.Tensor(mean)
        std = torch.Tensor(std)
        img_res = img_perm * std + mean
        return img_res.permute(0, 3, 1, 2)


class CocoClassMapper:
    def __init__(self) -> None:
        self.category_map_str = {
            "1": 1,
            "2": 2,
            "3": 3,
            "4": 4,
            "5": 5,
            "6": 6,
            "7": 7,
            "8": 8,
            "9": 9,
            "10": 10,
            "11": 11,
            "13": 12,
            "14": 13,
            "15": 14,
            "16": 15,
            "17": 16,
            "18": 17,
            "19": 18,
            "20": 19,
            "21": 20,
            "22": 21,
            "23": 22,
            "24": 23,
            "25": 24,
            "27": 25,
            "28": 26,
            "31": 27,
            "32": 28,
            "33": 29,
            "34": 30,
            "35": 31,
            "36": 32,
            "37": 33,
            "38": 34,
            "39": 35,
            "40": 36,
            "41": 37,
            "42": 38,
            "43": 39,
            "44": 40,
            "46": 41,
            "47": 42,
            "48": 43,
            "49": 44,
            "50": 45,
            "51": 46,
            "52": 47,
            "53": 48,
            "54": 49,
            "55": 50,
            "56": 51,
            "57": 52,
            "58": 53,
            "59": 54,
            "60": 55,
            "61": 56,
            "62": 57,
            "63": 58,
            "64": 59,
            "65": 60,
            "67": 61,
            "70": 62,
            "72": 63,
            "73": 64,
            "74": 65,
            "75": 66,
            "76": 67,
            "77": 68,
            "78": 69,
            "79": 70,
            "80": 71,
            "81": 72,
            "82": 73,
            "84": 74,
            "85": 75,
            "86": 76,
            "87": 77,
            "88": 78,
            "89": 79,
            "90": 80,
        }
        self.origin2compact_mapper = {int(k): v - 1 for k, v in self.category_map_str.items()}
        self.compact2origin_mapper = {int(v - 1): int(k) for k, v in self.category_map_str.items()}

    def origin2compact(self, idx):
        return self.origin2compact_mapper[int(idx)]

    def compact2origin(self, idx):
        return self.compact2origin_mapper[int(idx)]


def to_device(item, device):
    if isinstance(item, torch.Tensor):
        return item.to(device)
    elif isinstance(item, list):
        return [to_device(i, device) for i in item]
    elif isinstance(item, dict):
        return {k: to_device(v, device) for k, v in item.items()}
    else:
        raise NotImplementedError(
            "Call Shilong if you use other containers! type: {}".format(type(item))
        )


#
def get_gaussian_mean(x, axis, other_axis, softmax=True):
    """

    Args:
        x (float): Input images(BxCxHxW)
        axis (int): The index for weighted mean
        other_axis (int): The other index

    Returns: weighted index for axis, BxC

    """
    mat2line = torch.sum(x, axis=other_axis)
    # mat2line = mat2line / mat2line.mean() * 10
    if softmax:
        u = torch.softmax(mat2line, axis=2)
    else:
        u = mat2line / (mat2line.sum(2, keepdim=True) + 1e-6)
    size = x.shape[axis]
    ind = torch.linspace(0, 1, size).to(x.device)
    batch = x.shape[0]
    channel = x.shape[1]
    index = ind.repeat([batch, channel, 1])
    mean_position = torch.sum(index * u, dim=2)
    return mean_position


def get_expected_points_from_map(hm, softmax=True):
    """get_gaussian_map_from_points
        B,C,H,W -> B,N,2 float(0, 1) float(0, 1)
        softargmax function

    Args:
        hm (float): Input images(BxCxHxW)

    Returns:
        weighted index for axis, BxCx2. float between 0 and 1.

    """
    # hm = 10*hm
    B, C, H, W = hm.shape
    y_mean = get_gaussian_mean(hm, 2, 3, softmax=softmax)  # B,C
    x_mean = get_gaussian_mean(hm, 3, 2, softmax=softmax)  # B,C
    # return torch.cat((x_mean.unsqueeze(-1), y_mean.unsqueeze(-1)), 2)
    return torch.stack([x_mean, y_mean], dim=2)


# Positional encoding (section 5.1)
# borrow from nerf
class Embedder:
    def __init__(self, **kwargs):
        self.kwargs = kwargs
        self.create_embedding_fn()

    def create_embedding_fn(self):
        embed_fns = []
        d = self.kwargs["input_dims"]
        out_dim = 0
        if self.kwargs["include_input"]:
            embed_fns.append(lambda x: x)
            out_dim += d

        max_freq = self.kwargs["max_freq_log2"]
        N_freqs = self.kwargs["num_freqs"]

        if self.kwargs["log_sampling"]:
            freq_bands = 2.0 ** torch.linspace(0.0, max_freq, steps=N_freqs)
        else:
            freq_bands = torch.linspace(2.0**0.0, 2.0**max_freq, steps=N_freqs)

        for freq in freq_bands:
            for p_fn in self.kwargs["periodic_fns"]:
                embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
                out_dim += d

        self.embed_fns = embed_fns
        self.out_dim = out_dim

    def embed(self, inputs):
        return torch.cat([fn(inputs) for fn in self.embed_fns], -1)


def get_embedder(multires, i=0):
    import torch.nn as nn

    if i == -1:
        return nn.Identity(), 3

    embed_kwargs = {
        "include_input": True,
        "input_dims": 3,
        "max_freq_log2": multires - 1,
        "num_freqs": multires,
        "log_sampling": True,
        "periodic_fns": [torch.sin, torch.cos],
    }

    embedder_obj = Embedder(**embed_kwargs)
    embed = lambda x, eo=embedder_obj: eo.embed(x)
    return embed, embedder_obj.out_dim


class APOPMeter:
    def __init__(self) -> None:
        self.tp = 0
        self.fp = 0
        self.tn = 0
        self.fn = 0

    def update(self, pred, gt):
        """
        Input:
            pred, gt: Tensor()
        """
        assert pred.shape == gt.shape
        self.tp += torch.logical_and(pred == 1, gt == 1).sum().item()
        self.fp += torch.logical_and(pred == 1, gt == 0).sum().item()
        self.tn += torch.logical_and(pred == 0, gt == 0).sum().item()
        self.tn += torch.logical_and(pred == 1, gt == 0).sum().item()

    def update_cm(self, tp, fp, tn, fn):
        self.tp += tp
        self.fp += fp
        self.tn += tn
        self.tn += fn


def inverse_sigmoid(x, eps=1e-5):
    x = x.clamp(min=0, max=1)
    x1 = x.clamp(min=eps)
    x2 = (1 - x).clamp(min=eps)
    return torch.log(x1 / x2)


def get_raw_dict(args):
    """
    return the dicf contained in args.

    e.g:
        >>> with open(path, 'w') as f:
                json.dump(get_raw_dict(args), f, indent=2)
    """
    if isinstance(args, argparse.Namespace):
        return vars(args)
    elif isinstance(args, dict):
        return args
    elif isinstance(args, SLConfig):
        return args._cfg_dict
    else:
        raise NotImplementedError("Unknown type {}".format(type(args)))


def stat_tensors(tensor):
    assert tensor.dim() == 1
    tensor_sm = tensor.softmax(0)
    entropy = (tensor_sm * torch.log(tensor_sm + 1e-9)).sum()

    return {
        "max": tensor.max(),
        "min": tensor.min(),
        "mean": tensor.mean(),
        "var": tensor.var(),
        "std": tensor.var() ** 0.5,
        "entropy": entropy,
    }


class NiceRepr:
    """Inherit from this class and define ``__nice__`` to "nicely" print your
    objects.

    Defines ``__str__`` and ``__repr__`` in terms of ``__nice__`` function
    Classes that inherit from :class:`NiceRepr` should redefine ``__nice__``.
    If the inheriting class has a ``__len__``, method then the default
    ``__nice__`` method will return its length.

    Example:
        >>> class Foo(NiceRepr):
        ...    def __nice__(self):
        ...        return 'info'
        >>> foo = Foo()
        >>> assert str(foo) == '<Foo(info)>'
        >>> assert repr(foo).startswith('<Foo(info) at ')

    Example:
        >>> class Bar(NiceRepr):
        ...    pass
        >>> bar = Bar()
        >>> import pytest
        >>> with pytest.warns(None) as record:
        >>>     assert 'object at' in str(bar)
        >>>     assert 'object at' in repr(bar)

    Example:
        >>> class Baz(NiceRepr):
        ...    def __len__(self):
        ...        return 5
        >>> baz = Baz()
        >>> assert str(baz) == '<Baz(5)>'
    """

    def __nice__(self):
        """str: a "nice" summary string describing this module"""
        if hasattr(self, "__len__"):
            # It is a common pattern for objects to use __len__ in __nice__
            # As a convenience we define a default __nice__ for these objects
            return str(len(self))
        else:
            # In all other cases force the subclass to overload __nice__
            raise NotImplementedError(f"Define the __nice__ method for {self.__class__!r}")

    def __repr__(self):
        """str: the string of the module"""
        try:
            nice = self.__nice__()
            classname = self.__class__.__name__
            return f"<{classname}({nice}) at {hex(id(self))}>"
        except NotImplementedError as ex:
            warnings.warn(str(ex), category=RuntimeWarning)
            return object.__repr__(self)

    def __str__(self):
        """str: the string of the module"""
        try:
            classname = self.__class__.__name__
            nice = self.__nice__()
            return f"<{classname}({nice})>"
        except NotImplementedError as ex:
            warnings.warn(str(ex), category=RuntimeWarning)
            return object.__repr__(self)


def ensure_rng(rng=None):
    """Coerces input into a random number generator.

    If the input is None, then a global random state is returned.

    If the input is a numeric value, then that is used as a seed to construct a
    random state. Otherwise the input is returned as-is.

    Adapted from [1]_.

    Args:
        rng (int | numpy.random.RandomState | None):
            if None, then defaults to the global rng. Otherwise this can be an
            integer or a RandomState class
    Returns:
        (numpy.random.RandomState) : rng -
            a numpy random number generator

    References:
        .. [1] https://gitlab.kitware.com/computer-vision/kwarray/blob/master/kwarray/util_random.py#L270  # noqa: E501
    """

    if rng is None:
        rng = np.random.mtrand._rand
    elif isinstance(rng, int):
        rng = np.random.RandomState(rng)
    else:
        rng = rng
    return rng


def random_boxes(num=1, scale=1, rng=None):
    """Simple version of ``kwimage.Boxes.random``

    Returns:
        Tensor: shape (n, 4) in x1, y1, x2, y2 format.

    References:
        https://gitlab.kitware.com/computer-vision/kwimage/blob/master/kwimage/structs/boxes.py#L1390

    Example:
        >>> num = 3
        >>> scale = 512
        >>> rng = 0
        >>> boxes = random_boxes(num, scale, rng)
        >>> print(boxes)
        tensor([[280.9925, 278.9802, 308.6148, 366.1769],
                [216.9113, 330.6978, 224.0446, 456.5878],
                [405.3632, 196.3221, 493.3953, 270.7942]])
    """
    rng = ensure_rng(rng)

    tlbr = rng.rand(num, 4).astype(np.float32)

    tl_x = np.minimum(tlbr[:, 0], tlbr[:, 2])
    tl_y = np.minimum(tlbr[:, 1], tlbr[:, 3])
    br_x = np.maximum(tlbr[:, 0], tlbr[:, 2])
    br_y = np.maximum(tlbr[:, 1], tlbr[:, 3])

    tlbr[:, 0] = tl_x * scale
    tlbr[:, 1] = tl_y * scale
    tlbr[:, 2] = br_x * scale
    tlbr[:, 3] = br_y * scale

    boxes = torch.from_numpy(tlbr)
    return boxes


class ModelEma(torch.nn.Module):
    def __init__(self, model, decay=0.9997, device=None):
        super(ModelEma, self).__init__()
        # make a copy of the model for accumulating moving average of weights
        self.module = deepcopy(model)
        self.module.eval()

        # import ipdb; ipdb.set_trace()

        self.decay = decay
        self.device = device  # perform ema on different device from model if set
        if self.device is not None:
            self.module.to(device=device)

    def _update(self, model, update_fn):
        with torch.no_grad():
            for ema_v, model_v in zip(
                self.module.state_dict().values(), model.state_dict().values()
            ):
                if self.device is not None:
                    model_v = model_v.to(device=self.device)
                ema_v.copy_(update_fn(ema_v, model_v))

    def update(self, model):
        self._update(model, update_fn=lambda e, m: self.decay * e + (1.0 - self.decay) * m)

    def set(self, model):
        self._update(model, update_fn=lambda e, m: m)


class BestMetricSingle:
    def __init__(self, init_res=0.0, better="large") -> None:
        self.init_res = init_res
        self.best_res = init_res
        self.best_ep = -1

        self.better = better
        assert better in ["large", "small"]

    def isbetter(self, new_res, old_res):
        if self.better == "large":
            return new_res > old_res
        if self.better == "small":
            return new_res < old_res

    def update(self, new_res, ep):
        if self.isbetter(new_res, self.best_res):
            self.best_res = new_res
            self.best_ep = ep
            return True
        return False

    def __str__(self) -> str:
        return "best_res: {}\t best_ep: {}".format(self.best_res, self.best_ep)

    def __repr__(self) -> str:
        return self.__str__()

    def summary(self) -> dict:
        return {
            "best_res": self.best_res,
            "best_ep": self.best_ep,
        }


class BestMetricHolder:
    def __init__(self, init_res=0.0, better="large", use_ema=False) -> None:
        self.best_all = BestMetricSingle(init_res, better)
        self.use_ema = use_ema
        if use_ema:
            self.best_ema = BestMetricSingle(init_res, better)
            self.best_regular = BestMetricSingle(init_res, better)

    def update(self, new_res, epoch, is_ema=False):
        """
        return if the results is the best.
        """
        if not self.use_ema:
            return self.best_all.update(new_res, epoch)
        else:
            if is_ema:
                self.best_ema.update(new_res, epoch)
                return self.best_all.update(new_res, epoch)
            else:
                self.best_regular.update(new_res, epoch)
                return self.best_all.update(new_res, epoch)

    def summary(self):
        if not self.use_ema:
            return self.best_all.summary()

        res = {}
        res.update({f"all_{k}": v for k, v in self.best_all.summary().items()})
        res.update({f"regular_{k}": v for k, v in self.best_regular.summary().items()})
        res.update({f"ema_{k}": v for k, v in self.best_ema.summary().items()})
        return res

    def __repr__(self) -> str:
        return json.dumps(self.summary(), indent=2)

    def __str__(self) -> str:
        return self.__repr__()


def targets_to(targets: List[Dict[str, Any]], device):
    """Moves the target dicts to the given device."""
    excluded_keys = [
        "questionId",
        "tokens_positive",
        "strings_positive",
        "tokens",
        "dataset_name",
        "sentence_id",
        "original_img_id",
        "nb_eval",
        "task_id",
        "original_id",
        "token_span",
        "caption",
        "dataset_type",
    ]
    return [
        {k: v.to(device) if k not in excluded_keys else v for k, v in t.items()} for t in targets
    ]


def get_phrases_from_posmap(
    posmap: torch.BoolTensor, tokenized: Dict, tokenizer: AutoTokenizer
)->str:
    assert isinstance(posmap, torch.Tensor), "posmap must be torch.Tensor"
    if posmap.dim() == 1:
        non_zero_idx = posmap.nonzero(as_tuple=True)[0].tolist()
        token_ids = [tokenized["input_ids"][i] for i in non_zero_idx]
        return tokenizer.decode(token_ids)
    else:
        raise NotImplementedError("posmap must be 1-dim")