File size: 33,880 Bytes
0c33c60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Welcome to the start of your adventure in Agentic AI"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Are you ready for action??</h2>\n",
    "            <span style=\"color:#ff7800;\">Have you completed all the setup steps in the <a href=\"../setup/\">setup</a> folder?<br/>\n",
    "            Have you read the <a href=\"../README.md\">README</a>? Many common questions are answered here!<br/>\n",
    "            Have you checked out the guides in the <a href=\"../guides/01_intro.ipynb\">guides</a> folder?<br/>\n",
    "            Well in that case, you're ready!!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/tools.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#00bfff;\">This code is a live resource - keep an eye out for my updates</h2>\n",
    "            <span style=\"color:#00bfff;\">I push updates regularly. As people ask questions or have problems, I add more examples and improve explanations. As a result, the code below might not be identical to the videos, as I've added more steps and better comments. Consider this like an interactive book that accompanies the lectures.<br/><br/>\n",
    "            I try to send emails regularly with important updates related to the course. You can find this in the 'Announcements' section of Udemy in the left sidebar. You can also choose to receive my emails via your Notification Settings in Udemy. I'm respectful of your inbox and always try to add value with my emails!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### And please do remember to contact me if I can help\n",
    "\n",
    "And I love to connect: https://www.linkedin.com/in/eddonner/\n",
    "\n",
    "\n",
    "### New to Notebooks like this one? Head over to the guides folder!\n",
    "\n",
    "Just to check you've already added the Python and Jupyter extensions to Cursor, if not already installed:\n",
    "- Open extensions (View >> extensions)\n",
    "- Search for python, and when the results show, click on the ms-python one, and Install it if not already installed\n",
    "- Search for jupyter, and when the results show, click on the Microsoft one, and Install it if not already installed  \n",
    "Then View >> Explorer to bring back the File Explorer.\n",
    "\n",
    "And then:\n",
    "1. Click where it says \"Select Kernel\" near the top right, and select the option called `.venv (Python 3.12.9)` or similar, which should be the first choice or the most prominent choice. You may need to choose \"Python Environments\" first.\n",
    "2. Click in each \"cell\" below, starting with the cell immediately below this text, and press Shift+Enter to run\n",
    "3. Enjoy!\n",
    "\n",
    "After you click \"Select Kernel\", if there is no option like `.venv (Python 3.12.9)` then please do the following:  \n",
    "1. On Mac: From the Cursor menu, choose Settings >> VS Code Settings (NOTE: be sure to select `VSCode Settings` not `Cursor Settings`);  \n",
    "On Windows PC: From the File menu, choose Preferences >> VS Code Settings(NOTE: be sure to select `VSCode Settings` not `Cursor Settings`)  \n",
    "2. In the Settings search bar, type \"venv\"  \n",
    "3. In the field \"Path to folder with a list of Virtual Environments\" put the path to the project root, like C:\\Users\\username\\projects\\agents (on a Windows PC) or /Users/username/projects/agents (on Mac or Linux).  \n",
    "And then try again.\n",
    "\n",
    "Having problems with missing Python versions in that list? Have you ever used Anaconda before? It might be interferring. Quit Cursor, bring up a new command line, and make sure that your Anaconda environment is deactivated:    \n",
    "`conda deactivate`  \n",
    "And if you still have any problems with conda and python versions, it's possible that you will need to run this too:  \n",
    "`conda config --set auto_activate_base false`  \n",
    "and then from within the Agents directory, you should be able to run `uv python list` and see the Python 3.12 version."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "# First let's do an import. If you get an Import Error, double check that your Kernel is correct..\n",
    "\n",
    "from dotenv import load_dotenv\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Next it's time to load the API keys into environment variables\n",
    "# If this returns false, see the next cell!\n",
    "\n",
    "load_dotenv(override=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Wait, did that just output `False`??\n",
    "\n",
    "If so, the most common reason is that you didn't save your `.env` file after adding the key! Be sure to have saved.\n",
    "\n",
    "Also, make sure the `.env` file is named precisely `.env` and is in the project root directory (`agents`)\n",
    "\n",
    "By the way, your `.env` file should have a stop symbol next to it in Cursor on the left, and that's actually a good thing: that's Cursor saying to you, \"hey, I realize this is a file filled with secret information, and I'm not going to send it to an external AI to suggest changes, because your keys should not be shown to anyone else.\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/stop.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Final reminders</h2>\n",
    "            <span style=\"color:#ff7800;\">1. If you're not confident about Environment Variables or Web Endpoints / APIs, please read Topics 3 and 5 in this <a href=\"../guides/04_technical_foundations.ipynb\">technical foundations guide</a>.<br/>\n",
    "            2. If you want to use AIs other than OpenAI, like Gemini, DeepSeek or Ollama (free), please see the first section in this <a href=\"../guides/09_ai_apis_and_ollama.ipynb\">AI APIs guide</a>.<br/>\n",
    "            3. If you ever get a Name Error in Python, you can always fix it immediately; see the last section of this <a href=\"../guides/06_python_foundations.ipynb\">Python Foundations guide</a> and follow both tutorials and exercises.<br/>\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "OpenAI API Key exists and begins sk-proj-\n"
     ]
    }
   ],
   "source": [
    "# Check the key - if you're not using OpenAI, check whichever key you're using! Ollama doesn't need a key.\n",
    "\n",
    "import os\n",
    "openai_api_key = os.getenv('OPENAI_API_KEY')\n",
    "\n",
    "if openai_api_key:\n",
    "    print(f\"OpenAI API Key exists and begins {openai_api_key[:8]}\")\n",
    "else:\n",
    "    print(\"OpenAI API Key not set - please head to the troubleshooting guide in the setup folder\")\n",
    "    \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - the all important import statement\n",
    "# If you get an import error - head over to troubleshooting in the Setup folder\n",
    "\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now we'll create an instance of the OpenAI class\n",
    "# If you're not sure what it means to create an instance of a class - head over to the guides folder (guide 6)!\n",
    "# If you get a NameError - head over to the guides folder (guide 6)to learn about NameErrors - always instantly fixable\n",
    "# If you're not using OpenAI, you just need to slightly modify this - precise instructions are in the AI APIs guide (guide 9)\n",
    "\n",
    "openai = OpenAI()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Create a list of messages in the familiar OpenAI format\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"what is 19 * 22 * 0?\"}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Any number multiplied by zero equals zero. Therefore, 19 * 22 * 0 = 0.\n"
     ]
    }
   ],
   "source": [
    "# And now call it! Any problems, head to the troubleshooting guide\n",
    "# This uses GPT 4.1 nano, the incredibly cheap model\n",
    "# The APIs guide (guide 9) has exact instructions for using even cheaper or free alternatives to OpenAI\n",
    "# If you get a NameError, head to the guides folder (guide 6) to learn about NameErrors - always instantly fixable\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-nano\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "print(response.choices[0].message.content)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "# And now - let's ask for a question:\n",
    "\n",
    "question = \"Please propose a hard, challenging question to assess someone's IQ. Respond only with the question.\"\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "If two typists can type two pages in two minutes, how many typists will it take to type 18 pages in six minutes?\n"
     ]
    }
   ],
   "source": [
    "# ask it - this uses GPT 4.1 mini, still cheap but more powerful than nano\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-mini\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "question = response.choices[0].message.content\n",
    "\n",
    "print(question)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [],
   "source": [
    "# form a new messages list\n",
    "messages = [{\"role\": \"user\", \"content\": question}]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Let's analyze the problem step-by-step.\n",
      "\n",
      "**Given:**\n",
      "- 2 typists can type 2 pages in 2 minutes.\n",
      "\n",
      "**Find:**\n",
      "- How many typists are needed to type 18 pages in 6 minutes?\n",
      "\n",
      "---\n",
      "\n",
      "### Step 1: Find the rate of work per typist\n",
      "\n",
      "If 2 typists can type 2 pages in 2 minutes, then:\n",
      "\n",
      "- Total pages typed by 2 typists in 2 minutes: 2 pages\n",
      "- So, pages typed by 1 typist in 2 minutes: \\(\\frac{2 \\text{ pages}}{2} = 1 \\text{ page}\\)\n",
      "- Therefore, 1 typist types 1 page in 2 minutes.\n",
      "\n",
      "From this, the typing rate of 1 typist is:\n",
      "\n",
      "\\[\n",
      "\\frac{1 \\text{ page}}{2 \\text{ minutes}} = \\frac{1}{2} \\text{ pages per minute}\n",
      "\\]\n",
      "\n",
      "---\n",
      "\n",
      "### Step 2: Use this rate to find how many typists are needed for 18 pages in 6 minutes\n",
      "\n",
      "Suppose the number of typists needed is \\(x\\).\n",
      "\n",
      "- Total pages needed: 18\n",
      "- Total time available: 6 minutes\n",
      "- Pages per minute per typist: \\(\\frac{1}{2}\\)\n",
      "- Total pages typed by \\(x\\) typists in 6 minutes: \n",
      "\n",
      "\\[\n",
      "x \\times \\frac{1}{2} \\times 6 = 3x \\quad \\text{pages}\n",
      "\\]\n",
      "\n",
      "We need this to be equal to 18 pages:\n",
      "\n",
      "\\[\n",
      "3x = 18\n",
      "\\]\n",
      "\n",
      "Solving for \\(x\\):\n",
      "\n",
      "\\[\n",
      "x = \\frac{18}{3} = 6\n",
      "\\]\n",
      "\n",
      "---\n",
      "\n",
      "### **Answer:**\n",
      "\n",
      "\\[\n",
      "\\boxed{6}\n",
      "\\]\n",
      "\n",
      "It will take 6 typists to type 18 pages in 6 minutes.\n"
     ]
    }
   ],
   "source": [
    "# Ask it again\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-mini\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "answer = response.choices[0].message.content\n",
    "print(answer)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "Let's analyze the problem step-by-step.\n",
       "\n",
       "**Given:**\n",
       "- 2 typists can type 2 pages in 2 minutes.\n",
       "\n",
       "**Find:**\n",
       "- How many typists are needed to type 18 pages in 6 minutes?\n",
       "\n",
       "---\n",
       "\n",
       "### Step 1: Find the rate of work per typist\n",
       "\n",
       "If 2 typists can type 2 pages in 2 minutes, then:\n",
       "\n",
       "- Total pages typed by 2 typists in 2 minutes: 2 pages\n",
       "- So, pages typed by 1 typist in 2 minutes: \\(\\frac{2 \\text{ pages}}{2} = 1 \\text{ page}\\)\n",
       "- Therefore, 1 typist types 1 page in 2 minutes.\n",
       "\n",
       "From this, the typing rate of 1 typist is:\n",
       "\n",
       "\\[\n",
       "\\frac{1 \\text{ page}}{2 \\text{ minutes}} = \\frac{1}{2} \\text{ pages per minute}\n",
       "\\]\n",
       "\n",
       "---\n",
       "\n",
       "### Step 2: Use this rate to find how many typists are needed for 18 pages in 6 minutes\n",
       "\n",
       "Suppose the number of typists needed is \\(x\\).\n",
       "\n",
       "- Total pages needed: 18\n",
       "- Total time available: 6 minutes\n",
       "- Pages per minute per typist: \\(\\frac{1}{2}\\)\n",
       "- Total pages typed by \\(x\\) typists in 6 minutes: \n",
       "\n",
       "\\[\n",
       "x \\times \\frac{1}{2} \\times 6 = 3x \\quad \\text{pages}\n",
       "\\]\n",
       "\n",
       "We need this to be equal to 18 pages:\n",
       "\n",
       "\\[\n",
       "3x = 18\n",
       "\\]\n",
       "\n",
       "Solving for \\(x\\):\n",
       "\n",
       "\\[\n",
       "x = \\frac{18}{3} = 6\n",
       "\\]\n",
       "\n",
       "---\n",
       "\n",
       "### **Answer:**\n",
       "\n",
       "\\[\n",
       "\\boxed{6}\n",
       "\\]\n",
       "\n",
       "It will take 6 typists to type 18 pages in 6 minutes."
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Markdown, display\n",
    "\n",
    "display(Markdown(answer))\n",
    "\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Congratulations!\n",
    "\n",
    "That was a small, simple step in the direction of Agentic AI, with your new environment!\n",
    "\n",
    "Next time things get more interesting..."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<table style=\"margin: 0; text-align: left; width:100%\">\n",
    "    <tr>\n",
    "        <td style=\"width: 150px; height: 150px; vertical-align: middle;\">\n",
    "            <img src=\"../assets/exercise.png\" width=\"150\" height=\"150\" style=\"display: block;\" />\n",
    "        </td>\n",
    "        <td>\n",
    "            <h2 style=\"color:#ff7800;\">Exercise</h2>\n",
    "            <span style=\"color:#ff7800;\">Now try this commercial application:<br/>\n",
    "            First ask the LLM to pick a business area that might be worth exploring for an Agentic AI opportunity.<br/>\n",
    "            Then ask the LLM to present a pain-point in that industry - something challenging that might be ripe for an Agentic solution.<br/>\n",
    "            Finally have 3 third LLM call propose the Agentic AI solution. <br/>\n",
    "            We will cover this at up-coming labs, so don't worry if you're unsure.. just give it a try!\n",
    "            </span>\n",
    "        </td>\n",
    "    </tr>\n",
    "</table>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Certainly! One promising business area for an agentic AI opportunity is **Personalized Healthcare Management**.\n",
      "\n",
      "### Why Personalized Healthcare Management?\n",
      "\n",
      "- **Complex Decision-Making:** Managing chronic illnesses, medication schedules, diet, exercise, and mental health requires complex, ongoing decisions that vary by individual.\n",
      "- **Data-Driven:** There's abundant personal health data (wearables, medical records, lifestyle inputs) that an AI can utilize.\n",
      "- **High Impact:** Improved health outcomes and reduced healthcare costs are strong motivators for adoption.\n",
      "- **Agentic AI Role:** An agentic AI could proactively monitor patient data, identify health risks in real time, suggest lifestyle adjustments, schedule appointments, and even communicate with healthcare providers autonomously—acting as a personal health assistant.\n",
      "\n",
      "### Potential Features of an Agentic AI in this Space\n",
      "\n",
      "- **Continuous Monitoring:** Analyze inputs from devices and self-reports to detect anomalies or patterns.\n",
      "- **Personalized Recommendations:** Suggest actionable insights tailored to the user’s current conditions and lifestyle.\n",
      "- **Autonomous Scheduling:** Arrange doctor visits, lab tests, and medication refills.\n",
      "- **Behavioral Nudges:** Encourage adherence to treatment plans through timely reminders and motivational prompts.\n",
      "- **Crisis Response:** Detect emergencies (e.g., heart irregularities) and autonomously alert medical services or caretakers.\n",
      "\n",
      "### Why Agentic AI?\n",
      "\n",
      "Unlike reactive systems, an agentic AI can take initiative—it can plan, act, and adapt based on evolving health data, without needing explicit instructions at every step. This autonomy can greatly enhance user engagement and health outcomes.\n",
      "\n",
      "---\n",
      "\n",
      "If you'd like, I can help brainstorm specific product ideas or market strategies within this domain!\n"
     ]
    }
   ],
   "source": [
    "# First create the messages:\n",
    "\n",
    "messages = [{\"role\": \"user\", \"content\": \"can you pick a business area that might be worth exploring for an agentic Ai opportunity\"}]\n",
    "\n",
    "# Then make the first call:\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-mini\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.choices[0].message.content\n",
    "\n",
    "print(business_idea)\n",
    "\n",
    "# And repeat! In the next message, include the business idea within the message"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A significant pain point in the personal healthcare management industry is **patient adherence and engagement** with prescribed treatment plans and lifestyle recommendations. Many patients struggle to consistently follow medication schedules, attend follow-up appointments, or maintain lifestyle changes such as diet and exercise, which can lead to suboptimal health outcomes and increased healthcare costs.\n",
      "\n",
      "This challenge arises from factors like forgetfulness, lack of motivation, confusion about instructions, and insufficient personalized support. Traditional interventions—like reminder calls or generic educational materials—often fail to address the nuanced and dynamic nature of individual patient needs.\n",
      "\n",
      "### How Agentic AI Can Address This Pain Point\n",
      "\n",
      "**Agentic AI**, with its ability to act autonomously, understand context, and interact proactively, can revolutionize patient adherence by offering personalized, adaptive, and continuous support:\n",
      "\n",
      "1. **Personalized Interaction:** An agentic AI can engage patients via conversation, tailoring communication style, frequency, and content to match their preferences, health literacy, and emotional state.\n",
      "\n",
      "2. **Proactive Reminders & Monitoring:** Beyond static reminders, the AI can sense when a patient may be at risk of non-adherence (e.g., missed doses, declining engagement) and intervene with timely prompts, motivational messages, or even escalate to healthcare providers when necessary.\n",
      "\n",
      "3. **Dynamic Care Plan Adaptation:** Based on patient feedback and real-world data (e.g., biometrics, activity levels), the AI can suggest adjustments or clarify instructions to improve understanding and feasibility.\n",
      "\n",
      "4. **Emotional and Social Support:** The AI can provide encouragement, address concerns or misconceptions, and simulate empathetic interactions that bolster motivation.\n",
      "\n",
      "5. **Integration with Healthcare Systems:** Acting autonomously, the AI agent can update healthcare providers with adherence data and patient status, enabling timely clinical decisions.\n",
      "\n",
      "### Summary\n",
      "\n",
      "**Pain Point:** Low patient adherence and engagement with personal health management.\n",
      "\n",
      "**Solution via Agentic AI:** Autonomous, context-aware AI agents that provide personalized, proactive, and adaptive support to patients, improving adherence rates, health outcomes, and reducing provider burden.\n",
      "\n",
      "This type of solution is challenging because it requires sophisticated sensing, natural language understanding, empathy simulation, and data privacy safeguards, but advances in agentic AI make it increasingly feasible and promising.\n"
     ]
    }
   ],
   "source": [
    "messages = [{\"role\": \"user\", \"content\": \"what is a painpoint in personal healthcare management industry that is challenging but can be fixed using agentic ai\"}]\n",
    "\n",
    "# Then make the first call:\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-mini\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.choices[0].message.content\n",
    "\n",
    "print(business_idea)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "To address the crucial painpoint of **low patient adherence and engagement** in personal healthcare management, I propose an **Agentic AI-powered Personalized Health Engagement Assistant**. This solution leverages agentic AI capabilities—autonomous, proactive, and context-aware decision-making—to act as a personalized, intelligent health companion that continuously motivates, supports, and adapts to individual patient needs and behaviors.\n",
      "\n",
      "---\n",
      "\n",
      "### Proposed Agentic AI Solution: Personalized Health Engagement Assistant\n",
      "\n",
      "#### Key Features:\n",
      "\n",
      "1. **Context-Aware Personalization**\n",
      "   - The agent learns individual patient routines, preferences, health goals, and barriers.\n",
      "   - Uses multimodal data (wearables, health records, behavioral patterns) to understand context.\n",
      "   - Dynamically tailors recommendations, reminders, and motivational prompts to the patient’s lifestyle and emotional state.\n",
      "\n",
      "2. **Proactive and Adaptive Reminders**\n",
      "   - Sends timely medication reminders, appointment alerts, and health activity nudges.\n",
      "   - Adapts communication channels and messaging tone based on patient responsiveness (e.g., text, voice, app notifications).\n",
      "   - Can reschedule and reprioritize tasks autonomously when conflicts or missed actions are detected.\n",
      "\n",
      "3. **Behavioral Coaching & Motivational Support**\n",
      "   - Employs cognitive behavioral techniques and positive reinforcement to encourage healthy behaviors.\n",
      "   - Provides instant feedback and rewards for adherence (gamification elements).\n",
      "   - Detects signs of disengagement or health deterioration and escalates with personalized interventions or alerts to caregivers/providers.\n",
      "\n",
      "4. **Continuous Engagement Through Conversational AI**\n",
      "   - Engages patients via natural language conversations, answering questions, offering health tips, and empathizing with struggles.\n",
      "   - Enables two-way interaction so patients can express concerns or update their health status.\n",
      "   - Integrates with smart home devices and wearables enhancing engagement through ambient reminders.\n",
      "\n",
      "5. **Data-Driven Insights and Reporting**\n",
      "   - Tracks adherence trends, identifies risk factors for non-adherence.\n",
      "   - Shares actionable insights with healthcare providers to inform care plans.\n",
      "   - Respects privacy and ensures compliance with health data regulations (HIPAA, GDPR).\n",
      "\n",
      "---\n",
      "\n",
      "### Why Agentic AI?\n",
      "\n",
      "- **Autonomy:** The agent independently manages scheduling, messaging, and engagement strategies without constant manual input.\n",
      "- **Adaptability:** Learns from ongoing patient interactions and health outcomes to improve its support over time.\n",
      "- **Proactiveness:** Anticipates potential adherence challenges and intervenes early, rather than passively waiting.\n",
      "- **Human-like Engagement:** Conversational and empathetic interactions improve patient trust and willingness to adhere.\n",
      "\n",
      "---\n",
      "\n",
      "### Potential Impact:\n",
      "\n",
      "- Increased medication and lifestyle adherence rates.\n",
      "- Enhanced patient satisfaction and empowerment in health management.\n",
      "- Reduced complications and hospital readmissions.\n",
      "- Better patient-provider communication and personalized care.\n",
      "\n",
      "---\n",
      "\n",
      "If you’d like, I can also outline a tech stack, implementation plan, or discuss integration strategies with existing healthcare ecosystems!\n"
     ]
    }
   ],
   "source": [
    "messages = [{\"role\": \"user\", \"content\": \"what agentic ai solution do you propose for a crucial painpoint in personal healthcare management industry which is Low patient adherence and engagement with personal health management\"}]\n",
    "\n",
    "# Then make the first call:\n",
    "\n",
    "response = openai.chat.completions.create(\n",
    "    model=\"gpt-4.1-mini\",\n",
    "    messages=messages\n",
    ")\n",
    "\n",
    "# Then read the business idea:\n",
    "\n",
    "business_idea = response.choices[0].message.content\n",
    "\n",
    "print(business_idea)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/markdown": [
       "To address the crucial painpoint of **low patient adherence and engagement** in personal healthcare management, I propose an **Agentic AI-powered Personalized Health Engagement Assistant**. This solution leverages agentic AI capabilities—autonomous, proactive, and context-aware decision-making—to act as a personalized, intelligent health companion that continuously motivates, supports, and adapts to individual patient needs and behaviors.\n",
       "\n",
       "---\n",
       "\n",
       "### Proposed Agentic AI Solution: Personalized Health Engagement Assistant\n",
       "\n",
       "#### Key Features:\n",
       "\n",
       "1. **Context-Aware Personalization**\n",
       "   - The agent learns individual patient routines, preferences, health goals, and barriers.\n",
       "   - Uses multimodal data (wearables, health records, behavioral patterns) to understand context.\n",
       "   - Dynamically tailors recommendations, reminders, and motivational prompts to the patient’s lifestyle and emotional state.\n",
       "\n",
       "2. **Proactive and Adaptive Reminders**\n",
       "   - Sends timely medication reminders, appointment alerts, and health activity nudges.\n",
       "   - Adapts communication channels and messaging tone based on patient responsiveness (e.g., text, voice, app notifications).\n",
       "   - Can reschedule and reprioritize tasks autonomously when conflicts or missed actions are detected.\n",
       "\n",
       "3. **Behavioral Coaching & Motivational Support**\n",
       "   - Employs cognitive behavioral techniques and positive reinforcement to encourage healthy behaviors.\n",
       "   - Provides instant feedback and rewards for adherence (gamification elements).\n",
       "   - Detects signs of disengagement or health deterioration and escalates with personalized interventions or alerts to caregivers/providers.\n",
       "\n",
       "4. **Continuous Engagement Through Conversational AI**\n",
       "   - Engages patients via natural language conversations, answering questions, offering health tips, and empathizing with struggles.\n",
       "   - Enables two-way interaction so patients can express concerns or update their health status.\n",
       "   - Integrates with smart home devices and wearables enhancing engagement through ambient reminders.\n",
       "\n",
       "5. **Data-Driven Insights and Reporting**\n",
       "   - Tracks adherence trends, identifies risk factors for non-adherence.\n",
       "   - Shares actionable insights with healthcare providers to inform care plans.\n",
       "   - Respects privacy and ensures compliance with health data regulations (HIPAA, GDPR).\n",
       "\n",
       "---\n",
       "\n",
       "### Why Agentic AI?\n",
       "\n",
       "- **Autonomy:** The agent independently manages scheduling, messaging, and engagement strategies without constant manual input.\n",
       "- **Adaptability:** Learns from ongoing patient interactions and health outcomes to improve its support over time.\n",
       "- **Proactiveness:** Anticipates potential adherence challenges and intervenes early, rather than passively waiting.\n",
       "- **Human-like Engagement:** Conversational and empathetic interactions improve patient trust and willingness to adhere.\n",
       "\n",
       "---\n",
       "\n",
       "### Potential Impact:\n",
       "\n",
       "- Increased medication and lifestyle adherence rates.\n",
       "- Enhanced patient satisfaction and empowerment in health management.\n",
       "- Reduced complications and hospital readmissions.\n",
       "- Better patient-provider communication and personalized care.\n",
       "\n",
       "---\n",
       "\n",
       "If you’d like, I can also outline a tech stack, implementation plan, or discuss integration strategies with existing healthcare ecosystems!"
      ],
      "text/plain": [
       "<IPython.core.display.Markdown object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "from IPython.display import Markdown, display\n",
    "\n",
    "display(Markdown(business_idea))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.10"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}