File size: 25,917 Bytes
9917d34 476f41e 9917d34 476f41e 9917d34 fb73a92 9917d34 f402348 9917d34 685b5bb 9917d34 685b5bb 9917d34 097faaf fb73a92 097faaf 9917d34 78d62e7 9917d34 78d62e7 9917d34 fb73a92 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 9917d34 476f41e 097faaf 476f41e fb73a92 476f41e fb73a92 476f41e fb73a92 476f41e 097faaf 476f41e 9917d34 476f41e 9917d34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
import json
import logging
import os
import tempfile
import time
import zipfile
from io import StringIO
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from gretel_client import Gretel
from navigator_helpers import DataAugmentationConfig, DataAugmenter, StreamlitLogHandler
# Create a StringIO buffer to capture the logging output
log_buffer = StringIO()
# Create a handler to redirect logging output to the buffer
handler = logging.StreamHandler(log_buffer)
handler.setLevel(logging.INFO)
# Set up the logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.addHandler(handler)
SAMPLE_DATASET_URL = "https://gretel-public-website.s3.us-west-2.amazonaws.com/datasets/llm-training-data/dolly-examples-qa-with-context.csv"
WELCOME_MARKDOWN = """
Gretel Navigator is an interface designed to help you create high-quality, diverse training data examples through synthetic data generation techniques. It aims to assist in scenarios where you have limited training data or want to enhance the quality and diversity of your existing dataset.
## π― Key Use Cases
1. **Augment Existing Training Data**: Expand your existing training data with additional synthetic examples generated by Gretel Navigator. This can help improve the robustness and generalization of your AI models.
2. **Create Diverse Training or Evaluation Data**: Generate diverse training or evaluation data from plain text or seed examples. This ensures your AI models are exposed to a wide range of scenarios and edge cases during training.
3. **Address Data Limitations**: Generate additional examples to fill gaps in your dataset, particularly for underrepresented classes, rare events, or challenging scenarios. This helps improve your model's ability to handle diverse real-world situations.
4. **Mitigate Bias and Toxicity**: Generate training examples that are unbiased and non-toxic by incorporating diverse perspectives and adhering to ethical guidelines. This promotes fairness and responsible AI development.
5. **Enhance Model Performance**: Improve the performance of your AI models across various tasks by training them on diverse synthetic data generated by Gretel Navigator.
## π§ Getting Started
To start using Gretel Navigator, you'll need:
1. A Gretel account (free accounts are available).
2. Seed text or input/output pairs to create or augment AI training data.
## π Input Data Formats
Gretel Navigator supports the following formats for input data:
- Existing AI training or evaluation data formats:
- Input/Output pair format (or instruction/response) with any number of ground truth or "context fields".
- Plain text data.
- File formats:
- Hugging Face dataset
- CSV
- JSON
- JSONL
## π€ Output
Gretel Navigator generates one additional training example per row in the input/output pair format. You can specify requirements for the input and output pairs in the configuration. Run the process multiple times to scale your data to any desired level.
## π AI Alignment Techniques
Gretel Navigator incorporates AI alignment techniques to generate high-quality synthetic data:
- Diverse Instruction and Response Generation
- AI-Aligning-AI Methodology (AAA) for iterative data quality enhancement
- Quality Evaluation
- Bias and Toxicity Detection
By leveraging these techniques, Gretel Navigator helps you create training data that leads to more robust, unbiased, and high-performing AI models.
---
Ready to enhance your AI training data and unlock the full potential of your models? Let's get started with Gretel Navigator! π
"""
def main():
st.set_page_config(page_title="Gretel", layout="wide")
st.title("π¨ Gretel Navigator: Enhance Your AI Training Data")
st.write(
"Generate diverse synthetic training data from text or existing datasets to improve the performance and robustness of your AI models."
)
with st.expander("Introduction", expanded=False):
st.markdown(WELCOME_MARKDOWN)
st.subheader("Step 1: API Key Validation")
with st.expander("API Key Configuration", expanded=True):
api_key = st.text_input(
"Enter your Gretel API key (Get a free API key at: https://console.gretel.ai/users/me/key)",
value="",
type="password",
help="Your Gretel API key is required to authenticate and use Gretel Navigator. If you don't have one yet, sign up for a free account at https://console.gretel.ai to get started.",
)
if "gretel" not in st.session_state:
st.session_state.gretel = None
if st.button("Validate API Key"):
if api_key:
try:
st.session_state.gretel = Gretel(api_key=api_key, validate=True)
st.success("API key validated. Connection successful!")
except Exception as e:
st.error(f"Error connecting to Gretel: {str(e)}")
else:
st.warning("Please enter your Gretel API key to proceed.")
if st.session_state.gretel is None:
st.stop()
st.subheader("Step 2: Data Source Selection")
with st.expander("Data Source", expanded=True):
data_source = st.radio(
"Select data source",
options=[
"Upload a file",
"Select a dataset from Hugging Face",
"Use a sample dataset",
],
help="Choose whether to upload a file, select a dataset from Hugging Face, or use a sample dataset",
)
df = None
if data_source == "Upload a file":
uploaded_file = st.file_uploader(
"Upload a CSV, JSON, or JSONL file",
type=["csv", "json", "jsonl"],
help="Upload the dataset file in CSV, JSON, or JSONL format",
)
if uploaded_file is not None:
if uploaded_file.name.endswith(".csv"):
df = pd.read_csv(uploaded_file)
elif uploaded_file.name.endswith(".json"):
df = pd.read_json(uploaded_file)
elif uploaded_file.name.endswith(".jsonl"):
df = pd.read_json(uploaded_file, lines=True)
st.success(f"File uploaded successfully: {uploaded_file.name}")
elif data_source == "Select a dataset from Hugging Face":
huggingface_dataset = st.text_input(
"Hugging Face Dataset Repository",
help="Enter the name of the Hugging Face dataset repository (e.g., 'squad')",
)
huggingface_split = st.selectbox(
"Dataset Split",
options=["train", "validation", "test"],
help="Select the dataset split to use",
)
if st.button("Load Hugging Face Dataset"):
if huggingface_dataset:
try:
with st.spinner("Loading dataset from Hugging Face..."):
dataset = load_dataset(
huggingface_dataset, split=huggingface_split
)
df = dataset.to_pandas()
st.success(
f"Dataset loaded from Hugging Face repository: {huggingface_dataset}"
)
except Exception as e:
st.error(f"Error loading dataset from Hugging Face: {str(e)}")
else:
st.warning("Please provide a Hugging Face dataset repository name.")
elif data_source == "Use a sample dataset":
st.write("Try a sample dataset to get started quickly.")
if st.button("Try Sample Dataset"):
try:
df = pd.read_csv(SAMPLE_DATASET_URL)
st.success("Sample dataset loaded successfully.")
except Exception as e:
st.error(f"Error downloading sample dataset: {str(e)}")
if df is not None:
st.session_state.df = df
st.session_state.selected_fields = list(df.columns)
st.write(
f"Loaded dataset with {len(df)} rows and {len(df.columns)} columns."
)
else:
df = st.session_state.get("df")
st.subheader("Step 3: Data Preview and Configuration")
if df is not None:
with st.expander("Data Preview", expanded=True):
st.dataframe(df.head())
with st.expander("Input Fields Selection", expanded=True):
st.write(
"Select the context fields to provide the LLM access to for generating input/output pairs. This can include existing instructions and responses. All selected fields will be treated as ground truth data."
)
selected_fields = []
for column in df.columns:
if st.checkbox(
column,
value=column in st.session_state.get("selected_fields", []),
key=f"checkbox_{column}",
):
selected_fields.append(column)
st.session_state.selected_fields = selected_fields
with st.expander("Advanced Options", expanded=False):
output_instruction_field = st.text_input(
"Synthetic instruction field",
value=st.session_state.get("output_instruction_field", "instruction"),
help="Specify the name of the output field for generated instructions",
)
st.session_state.output_instruction_field = output_instruction_field
output_response_field = st.text_input(
"Synthetic response field",
value=st.session_state.get("output_response_field", "response"),
help="Specify the name of the output field for generated responses",
)
st.session_state.output_response_field = output_response_field
num_records = st.number_input(
"Max number of records from input data to process",
min_value=1,
max_value=len(df),
value=len(df),
help="Specify the number of records to process",
)
st.session_state.num_records = num_records
num_instructions = st.number_input(
"Number of diverse candidate instructions",
min_value=1,
value=st.session_state.get("num_instructions", 5),
help="Specify the number of instructions to generate",
)
st.session_state.num_instructions = num_instructions
num_responses = st.number_input(
"Number of diverse candidateresponses",
min_value=1,
value=st.session_state.get("num_responses", 5),
help="Specify the number of responses to generate",
)
st.session_state.num_responses = num_responses
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=st.session_state.get("temperature", 0.8),
step=0.1,
help="Adjust the temperature for response generation",
)
st.session_state.temperature = temperature
max_tokens_instruction = st.slider(
"Max tokens (instruction)",
min_value=1,
max_value=1024,
value=st.session_state.get("max_tokens_instruction", 100),
help="Specify the maximum number of tokens for instructions",
)
st.session_state.max_tokens_instruction = max_tokens_instruction
max_tokens_response = st.slider(
"Max tokens (response)",
min_value=1,
max_value=1024,
value=st.session_state.get("max_tokens_response", 100),
help="Specify the maximum number of tokens for responses",
)
st.session_state.max_tokens_response = max_tokens_response
with st.expander("Model Configuration", expanded=True):
st.markdown("### Primary Navigator Models")
tabular_models = st.session_state.gretel.factories.get_navigator_model_list(
"tabular"
)
navigator_tabular = st.selectbox(
"Navigator Tabular",
options=tabular_models,
index=st.session_state.get("navigator_tabular_index", 0),
help="Select the primary Navigator tabular model",
)
st.session_state.navigator_tabular_index = tabular_models.index(
navigator_tabular
)
nl_models = st.session_state.gretel.factories.get_navigator_model_list(
"natural_language"
)
navigator_llm = st.selectbox(
"Navigator LLM",
options=nl_models,
index=st.session_state.get("navigator_llm_index", 0),
help="Select the primary Navigator LLM",
)
st.session_state.navigator_llm_index = nl_models.index(navigator_llm)
st.markdown("---")
st.markdown("### AI Align AI (AAA)")
st.write(
"AI Align AI (AAA) is a technique that iteratively improves the quality and coherence of generated outputs by using multiple LLMs for co-teaching and self-teaching. Enabling AAA will enhance the overall quality of the synthetic data, but it may slow down the generation process."
)
use_aaa = st.checkbox(
"Use AI Align AI (AAA)",
value=st.session_state.get("use_aaa", True),
help="Enable or disable the use of AI Align AI.",
)
st.session_state.use_aaa = use_aaa
co_teach_llms = [] # Initialize co_teach_llms with an empty list
if use_aaa:
st.markdown("#### Navigator Co-teaching LLMs")
st.write(
"Select additional Navigator LLMs for co-teaching in AAA. It is recommended to use different LLMs than the primary Navigator LLM for this step."
)
for model in nl_models:
if model != navigator_llm:
if st.checkbox(model, value=True, key=f"checkbox_{model}"):
co_teach_llms.append(model)
else:
if st.checkbox(model, value=False, key=f"checkbox_{model}"):
co_teach_llms.append(model)
st.session_state.co_teach_llms = co_teach_llms
st.markdown("---")
st.markdown("### Format Prompts")
instruction_format_prompt = st.text_area(
"Instruction Format Prompt",
value=st.session_state.get(
"instruction_format_prompt",
"A well-formulated question or command in everyday English.",
),
help="Specify the format prompt for instructions",
)
st.session_state.instruction_format_prompt = instruction_format_prompt
response_format_prompt = st.text_area(
"Response Format Prompt",
value=st.session_state.get(
"response_format_prompt",
"A well-formulated response to the question in everyday English.",
),
help="Specify the format prompt for responses",
)
st.session_state.response_format_prompt = response_format_prompt
with st.expander("Download SDK Code", expanded=False):
st.markdown("### Ready to generate data at scale?")
st.write(
"Get started with your current configuration using the SDK code below:"
)
config_text = f"""
#!pip install -Uqq git+https://github.com/gretelai/navigator-helpers.git
import logging
import sys
import pandas as pd
from navigator_helpers import DataAugmentationConfig, DataAugmenter
# Configure the logger
logger = logging.getLogger()
logger.setLevel(logging.INFO)
DATASET = "YOUR_DATASET"
API_KEY = "YOUR_API_KEY"
df = pd.read_csv(DATASET)
# Create the data augmentation configuration
config = DataAugmentationConfig(
input_fields={st.session_state.selected_fields},
output_instruction_field="{output_instruction_field}",
output_response_field="{output_response_field}",
num_instructions={num_instructions},
num_responses={num_responses},
temperature={temperature},
max_tokens_instruction={max_tokens_instruction},
max_tokens_response={max_tokens_response},
api_key=API_KEY,
navigator_tabular="{navigator_tabular}",
navigator_llm="{navigator_llm}",
co_teach_llms={co_teach_llms},
instruction_format_prompt='''{instruction_format_prompt}''',
response_format_prompt='''{response_format_prompt}'''
)
# Create the data augmenter and perform augmentation
augmenter = DataAugmenter(
df,
config,
use_aaa={use_aaa},
output_file="results.csv",
verbose=True,
)
new_df = augmenter.augment()
"""
st.code(config_text, language="python")
st.download_button(
label="Download SDK Code",
data=config_text,
file_name="data_augmentation_code.py",
mime="text/plain",
)
start_stop_container = st.empty()
col1, col2 = st.columns(2)
with col1:
start_button = st.button("π Start")
with col2:
stop_button = st.button("π Stop")
if "logs" not in st.session_state:
st.session_state.logs = []
if "augmented_data" not in st.session_state:
st.session_state.augmented_data = []
if start_button:
# Clear the augmented data and logs before starting a new generation
st.session_state.augmented_data = []
st.session_state.logs = []
with st.expander("Synthetic Data", expanded=True):
st.subheader("Synthetic Data Generation")
progress_bar = st.progress(0)
tab1, tab2 = st.tabs(["Augmented Data", "Logs"])
with tab1:
augmented_data_placeholder = st.empty()
st.info(
"Click on the 'Logs' tab to see and debug real-time logging for each record as it is generated by the agents."
)
with tab2:
log_container = st.empty()
max_log_lines = 50
def custom_log_handler(msg):
st.session_state.logs.append(msg)
displayed_logs = st.session_state.logs[-max_log_lines:]
log_text = "\n".join(displayed_logs)
log_container.text(log_text)
# Remove the previous log handler if it exists
logger = logging.getLogger("navigator_helpers")
for handler in logger.handlers:
if isinstance(handler, StreamlitLogHandler):
logger.removeHandler(handler)
handler = StreamlitLogHandler(custom_log_handler)
logger.addHandler(handler)
config = DataAugmentationConfig(
input_fields=selected_fields,
output_instruction_field=output_instruction_field,
output_response_field=output_response_field,
num_instructions=num_instructions,
num_responses=num_responses,
temperature=temperature,
max_tokens_instruction=max_tokens_instruction,
max_tokens_response=max_tokens_response,
api_key=api_key,
navigator_tabular=navigator_tabular,
navigator_llm=navigator_llm,
co_teach_llms=co_teach_llms,
instruction_format_prompt=instruction_format_prompt,
response_format_prompt=response_format_prompt,
)
start_time = time.time()
with st.spinner("Generating synthetic data..."):
for index in range(num_records):
row = df.iloc[index]
augmenter = DataAugmenter(
pd.DataFrame([row]),
config,
use_aaa=use_aaa,
output_file="results.csv",
verbose=True,
)
new_df = augmenter.augment()
st.session_state.augmented_data.append(new_df)
augmented_data_placeholder.subheader("Synthetic Data")
augmented_data_placeholder.dataframe(
pd.concat(
st.session_state.augmented_data, ignore_index=True
)
)
progress = (index + 1) / num_records
progress_bar.progress(progress)
elapsed_time = time.time() - start_time
records_processed = index + 1
records_remaining = num_records - records_processed
est_time_per_record = (
elapsed_time / records_processed
if records_processed > 0
else 0
)
est_time_remaining = est_time_per_record * records_remaining
progress_text = f"Progress: {progress:.2%} | Records Processed: {records_processed} | Records Remaining: {records_remaining} | Est. Time per Record: {est_time_per_record:.2f}s | Est. Time Remaining: {est_time_remaining:.2f}s"
progress_bar.text(progress_text)
time.sleep(0.1)
logger.removeHandler(handler)
st.success("Data augmentation completed!")
st.stop()
if stop_button:
st.warning("Augmentation stopped by the user.")
# Get the complete logs from the session state
complete_logs = st.session_state.logs
# Convert complete logs to JSONL format
log_jsonl = "\n".join([json.dumps({"log": log}) for log in complete_logs])
# Convert augmented data to JSONL format if it exists
if st.session_state.augmented_data:
augmented_df = pd.concat(
st.session_state.augmented_data, ignore_index=True
)
if not augmented_df.empty:
augmented_data_jsonl = "\n".join(
[
json.dumps(row.to_dict())
for _, row in augmented_df.iterrows()
]
)
else:
augmented_data_jsonl = None
else:
augmented_data_jsonl = None
# Create a temporary directory to store the files
with tempfile.TemporaryDirectory() as temp_dir:
# Write the complete logs to a file
log_file_path = os.path.join(temp_dir, "complete_logs.jsonl")
with open(log_file_path, "w") as log_file:
log_file.write(log_jsonl)
# Write the augmented data to a file if it exists
if augmented_data_jsonl:
augmented_data_file_path = os.path.join(
temp_dir, "synthetic_data.jsonl"
)
with open(augmented_data_file_path, "w") as augmented_data_file:
augmented_data_file.write(augmented_data_jsonl)
# Write the SDK code to a file
sdk_file_path = os.path.join(temp_dir, "data_augmentation_code.py")
with open(sdk_file_path, "w") as sdk_file:
sdk_file.write(config_text)
# Create a ZIP file containing the logs, augmented data, and SDK code
zip_file_path = os.path.join(temp_dir, "augmentation_results.zip")
with zipfile.ZipFile(zip_file_path, "w") as zip_file:
zip_file.write(log_file_path, "complete_logs.jsonl")
if augmented_data_jsonl:
zip_file.write(augmented_data_file_path, "augmented_data.jsonl")
zip_file.write(sdk_file_path, "data_augmentation_code.py")
# Download the ZIP file
with open(zip_file_path, "rb") as zip_file:
st.download_button(
label="πΎ Download Synthetic Data, Logs, and SDK Code",
data=zip_file.read(),
file_name="gretel_synthetic_data.zip",
mime="application/zip",
)
st.stop()
else:
st.info(
"Please upload a file or select a dataset from Hugging Face to proceed."
)
if __name__ == "__main__":
main()
|