Spaces:
Running
Running
File size: 1,227 Bytes
df21123 eed6669 df21123 eed6669 edb46f7 df21123 eed6669 edb46f7 df21123 edb46f7 df21123 edb46f7 df21123 edb46f7 df21123 edb46f7 df21123 edb46f7 521641c edb46f7 df21123 eed6669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from fastai.vision.all import *
import gradio as gr
import os
def house_room(x):
return x[0].isupper()
# Load the learner model
learn_inf = load_learner("model/model.pkl")
categories = learn_inf.dls.vocab
# Log the categories
print(categories)
# Comma separated string of categories with and between the last two
categories_str = ", ".join(categories[:-1]) + " or " + categories[-1]
def classify_image(img):
pred, idx, probs = learn_inf.predict(img)
return {f"{categories[idx]}": float(probs[idx])}
image = gr.Image(sources=["upload"], label="Image")
label = gr.Label()
# Load the images from the examples folder
examples = []
for file in os.listdir("images/examples"):
if file.endswith(".jpg"):
examples.append([f"images/examples/{file}"])
iface = gr.Interface(
fn=classify_image,
inputs=image,
outputs=label,
examples=examples,
analytics_enabled=False,
title="<h1>House Room Classifier</h1>",
description='<p style = "font-size: 1.4rem;">This model classifies a photo of a house room as either <strong>' + categories_str + '</strong>.</p><p style = "font-size: 1.2rem;">Upload an image or use the examples below.</p>',
flagging_options=[],
)
iface.launch() |