File size: 5,040 Bytes
5b0e053
 
 
 
 
 
 
 
 
 
 
 
36b6445
 
5b0e053
1debd05
60e595a
5b0e053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb211b5
 
 
 
 
 
5b0e053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a08d52a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5f6cc3
5b0e053
 
 
a08d52a
 
5b0e053
a08d52a
389d87d
81d5de5
f7ad4a5
a08d52a
 
 
 
 
 
 
 
f7ad4a5
 
c138294
083205d
3f16521
a08d52a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os
import cv2

#PATH_TO_LABELS = 'data/label_map.pbtxt'   
PATH_TO_LABELS = 'label_map.pbtxt'
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model():
    download_dir = snapshot_download(REPO_ID)
    saved_model_dir = os.path.join(download_dir, "saved_model")
    detection_model = tf.saved_model.load(saved_model_dir)
    return detection_model

#def load_model2():
#    wget.download("https://nyp-aicourse.s3-ap-southeast-1.amazonaws.com/pretrained-models/balloon_model.tar.gz")
#    tarfile.open("balloon_model.tar.gz").extractall()
#    model_dir = 'saved_model'    
#    detection_model = tf.saved_model.load(str(model_dir))
#    return detection_model    

# samples_folder = 'test_samples
# image_path = 'test_samples/sample_balloon.jpeg
# 

def predict(pilimg):

    image_np = pil_image_as_numpy_array(pilimg)
    return predict2(image_np)

def predict2(image_np):

    results = detection_model(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=200,
        min_score_thresh=.60,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img
###
def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
    video_reader = cv2.VideoCapture(video_in_filepath)
    frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = video_reader.get(cv2.CAP_PROP_FPS)
    
    video_writer = cv2.VideoWriter(
        video_out_filepath,
        cv2.VideoWriter_fourcc(*'mp4v'),
        fps,
        (frame_w, frame_h)
    )
    while True:
        ret, frame = video_reader.read()
        if not ret:
            break  # Break the loop if the video is finished
        
        processed_frame = predict(frame)
        processed_frame_np = np.array(processed_frame)
        video_writer.write(processed_frame_np)
                
    # Release camera and close windows
    video_reader.release()
    video_writer.release() 
    cv2.destroyAllWindows() 
    cv2.waitKey(1)        
    video_reader.release()
    video_writer.release()
    cv2.destroyAllWindows()
    cv2.waitKey(1)

# Function to process a video
def process_video(video_path):
    output_path = "output_video.mp4"  # Output path for the processed video
    predict_on_video(video_path, output_path, detection_model, category_index)
    return output_path

# Specify paths to example images
sample_images = [["sample1.jpg"], ["sample2.jpg"],
                 ["sample3.jpg"]
                ]
###
REPO_ID = "gregarific/assignmodel"
detection_model = load_model()
# pil_image = Image.open(image_path)
# image_arr = pil_image_as_numpy_array(pil_image)
###
tab1 = gr.Interface(fn=predict,
             inputs=gr.Image(type="pil"),
             outputs=gr.Image(type="pil"), 
             examples=[["sample1.jpg"],["sample2.jpg"],["sample3.jpg"]], 
             title="Object Detection (WheelChair & Motorized WheelChair)",
             description='Model Applied: SSD MobileNet V2 320x320.'
             )

#gr.Interface(fn=predict,
#             inputs=gr.Image(type="pil"),
#             outputs=gr.Image(type="pil")
#            ).launch(share=True)
tab2 = gr.Interface(
    fn=process_video,
    inputs=gr.File(label="Upload a Video"),
    outputs=gr.File(label="Output Analysis"),
    examples=["Wheelchair Snippet.mp4"],
    title='Object Detection (WheelChair & Motorized Wheelchair)', 
    description='Model Applied: SSD MobileNet V2 320x320'
)


iface = gr.TabbedInterface([tab1, tab2], tab_names  = ['Image','Video'], title='WheelChair Type Detection')

iface.launch(share=True)