File size: 14,894 Bytes
f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 f64528c 13b7b20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 |
import gradio as gr
import torch
from PIL import Image
import requests
from io import BytesIO
import json
import time
import os
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import CLIPVisionModel, CLIPImageProcessor
import warnings
warnings.filterwarnings("ignore")
print("π Starting LLaVA deployment...")
# Check GPU availability
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"π» Using device: {device}")
# Global variables for model components
tokenizer = None
model = None
image_processor = None
vision_tower = None
def load_model():
"""Load LLaVA model components"""
global tokenizer, model, image_processor, vision_tower
try:
print("π¦ Loading tokenizer...")
# Use the smaller 7B model for free tier
model_path = "liuhaotian/llava-v1.5-7b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
print("π§ Loading language model...")
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if device == "cuda" else torch.float32,
low_cpu_mem_usage=True,
device_map="auto" if device == "cuda" else None
)
print("ποΈ Loading vision components...")
# Load vision tower
vision_tower = CLIPVisionModel.from_pretrained("openai/clip-vit-large-patch14-336")
image_processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
if device == "cuda":
vision_tower = vision_tower.to(device)
print("β
Model loaded successfully!")
return True
except Exception as e:
print(f"β Error loading model: {str(e)}")
return False
def process_image(image):
"""Process image for the model"""
if image is None:
return None
try:
# Convert to RGB if needed
if image.mode != 'RGB':
image = image.convert('RGB')
# Process image
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
if device == "cuda":
image_tensor = image_tensor.to(device)
# Get image features
with torch.no_grad():
image_features = vision_tower(image_tensor).last_hidden_state
return image_features
except Exception as e:
print(f"Error processing image: {str(e)}")
return None
def generate_response(message, image=None, system_prompt="", max_tokens=1024, temperature=0.7):
"""Generate response using LLaVA"""
global tokenizer, model, image_processor, vision_tower
if model is None:
return "β Model not loaded. Please wait for initialization."
try:
# Process image if provided
image_features = None
if image is not None:
image_features = process_image(image)
if image_features is None:
return "β Error processing image."
# Prepare prompt
if system_prompt:
full_prompt = f"System: {system_prompt}\n\nUser: {message}\n\nAssistant:"
else:
if image is not None:
full_prompt = f"USER: <image>\n{message}\nASSISTANT:"
else:
full_prompt = f"USER: {message}\nASSISTANT:"
# Tokenize
inputs = tokenizer(full_prompt, return_tensors="pt")
if device == "cuda":
inputs = {k: v.to(device) for k, v in inputs.items()}
# Generate
with torch.no_grad():
if image_features is not None:
# For multimodal input, we need to handle image features
# This is a simplified version - real LLaVA has more complex integration
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
else:
# Text-only generation
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
# Decode response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Clean up response (remove the input prompt)
response = response[len(full_prompt):].strip()
return response
except Exception as e:
return f"β Error generating response: {str(e)}"
def api_endpoint(request_json):
"""API endpoint for programmatic access"""
try:
data = json.loads(request_json)
message = data.get("message", "")
system_prompt = data.get("system_prompt", "")
image_url = data.get("image_url", None)
max_tokens = int(data.get("max_tokens", 1024))
temperature = float(data.get("temperature", 0.7))
# Process image if URL provided
image = None
if image_url:
try:
response = requests.get(image_url, timeout=10)
if response.status_code == 200:
image = Image.open(BytesIO(response.content))
except Exception as e:
return json.dumps({"error": f"Failed to load image: {str(e)}"})
# Generate response
response_text = generate_response(
message=message,
image=image,
system_prompt=system_prompt,
max_tokens=max_tokens,
temperature=temperature
)
# Return API response
return json.dumps({
"id": f"chatcmpl-{int(time.time())}",
"object": "chat.completion",
"created": int(time.time()),
"model": "llava-v1.5-7b",
"choices": [{
"message": {
"role": "assistant",
"content": response_text
},
"index": 0,
"finish_reason": "stop"
}],
"usage": {
"prompt_tokens": 0, # Simplified
"completion_tokens": 0, # Simplified
"total_tokens": 0 # Simplified
}
})
except Exception as e:
return json.dumps({"error": str(e)})
# Initialize model on startup
print("π Initializing model...")
model_loaded = load_model()
# Create Gradio interface
with gr.Blocks(title="LLaVA - Large Language and Vision Assistant", theme=gr.themes.Soft()) as demo:
gr.Markdown("""
# π¦ LLaVA - Large Language and Vision Assistant
An open-source chatbot trained by fine-tuning LLaMA/Vicuna on GPT-generated multimodal instruction-following data.
**Features:**
- π¬ Text-based conversation
- πΌοΈ Image understanding and description
- π§ API endpoint for integration
""")
with gr.Tab("π¬ Chat Interface"):
with gr.Row():
with gr.Column(scale=1):
image_input = gr.Image(
type="pil",
label="πΈ Upload Image (Optional)",
height=300
)
system_prompt = gr.Textbox(
label="π― System Prompt (Optional)",
placeholder="You are a helpful assistant that can analyze images...",
lines=2
)
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="π Conversation",
height=400
)
msg = gr.Textbox(
label="βοΈ Your Message",
placeholder="Type your message here... You can ask about the uploaded image!",
lines=2
)
with gr.Row():
submit_btn = gr.Button("π Send", variant="primary")
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
with gr.Accordion("βοΈ Advanced Settings", open=False):
max_tokens = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="π Max Tokens"
)
temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="π‘οΈ Temperature"
)
with gr.Tab("π API Documentation"):
gr.Markdown("""
## API Endpoint Usage
**Endpoint**: `https://your-space-name.hf.space/api/predict`
**Method**: POST
### Request Format:
```json
{
"data": [
"{
\"message\": \"Describe this image in detail\",
\"system_prompt\": \"You are a helpful assistant\",
\"image_url\": \"https://example.com/image.jpg\",
\"max_tokens\": 1024,
\"temperature\": 0.7
}"
]
}
```
### Response Format:
```json
{
"data": [
"{
\"id\": \"chatcmpl-123456789\",
\"object\": \"chat.completion\",
\"created\": 1683123456,
\"model\": \"llava-v1.5-7b\",
\"choices\": [
{
\"message\": {
\"role\": \"assistant\",
\"content\": \"This image shows...\"
},
\"index\": 0,
\"finish_reason\": \"stop\"
}
]
}"
]
}
```
### Python Client Example:
```python
import requests
import json
def query_llava(message, image_url=None, system_prompt=""):
payload = {
"data": [json.dumps({
"message": message,
"image_url": image_url,
"system_prompt": system_prompt,
"max_tokens": 1024,
"temperature": 0.7
})]
}
response = requests.post(
"https://your-space-name.hf.space/api/predict",
json=payload
)
if response.status_code == 200:
result = response.json()
api_response = json.loads(result["data"][0])
return api_response["choices"][0]["message"]["content"]
else:
return f"Error: {response.status_code}"
# Example usage
result = query_llava(
"What do you see in this image?",
image_url="https://example.com/image.jpg"
)
print(result)
```
""")
# API testing interface
gr.Markdown("### π§ͺ Test API")
api_input = gr.Textbox(
label="π API Request (JSON)",
placeholder='{"message": "Hello!", "max_tokens": 1024}',
lines=4
)
api_output = gr.Textbox(
label="π€ API Response",
lines=8
)
api_test_btn = gr.Button("π§ͺ Test API", variant="primary")
with gr.Tab("βΉοΈ About"):
gr.Markdown("""
## About LLaVA
**LLaVA (Large Language and Vision Assistant)** is an open-source multimodal AI assistant that combines:
- π§ **Language Understanding**: Based on Vicuna/LLaMA architecture
- ποΈ **Vision Capabilities**: Uses CLIP vision encoder
- π **Multimodal Integration**: Connects vision and language seamlessly
### Key Features:
- **Visual Question Answering**: Ask questions about images
- **Image Description**: Get detailed descriptions of uploaded images
- **General Conversation**: Chat about any topic
- **API Integration**: Easy integration with your applications
### Model Information:
- **Base Model**: LLaVA-v1.5-7B
- **Vision Encoder**: CLIP ViT-L/14@336px
- **Language Model**: Vicuna-7B
- **Training Data**: LLaVA-Instruct-150K
### Citation:
```
@misc{liu2023llava,
title={Visual Instruction Tuning},
author={Haotian Liu and Chunyuan Li and Qingyang Wu and Yong Jae Lee},
year={2023},
eprint={2304.08485},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
**GitHub**: [https://github.com/haotian-liu/LLaVA](https://github.com/haotian-liu/LLaVA)
""")
# Event handlers
def respond(message, chat_history, image, system_prompt, max_tokens, temperature):
if not message.strip():
return "", chat_history
# Add user message to chat
chat_history.append([message, None])
# Generate response
response = generate_response(
message=message,
image=image,
system_prompt=system_prompt if system_prompt.strip() else "",
max_tokens=int(max_tokens),
temperature=temperature
)
# Add assistant response to chat
chat_history[-1][1] = response
return "", chat_history
def clear_chat():
return None, []
# Connect event handlers
submit_btn.click(
respond,
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
[msg, chatbot]
)
msg.submit(
respond,
[msg, chatbot, image_input, system_prompt, max_tokens, temperature],
[msg, chatbot]
)
clear_btn.click(clear_chat, outputs=[chatbot, msg])
api_test_btn.click(api_endpoint, inputs=api_input, outputs=api_output)
# Add API endpoint
api_interface = gr.Interface(
fn=api_endpoint,
inputs=gr.Textbox(),
outputs=gr.Textbox(),
api_name="predict"
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |