Spaces:
Sleeping
Sleeping
File size: 10,869 Bytes
9aedf73 6ced301 9aedf73 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 7a4f2a2 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 05f403c 6ced301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 |
---
title: Phosformer ST
emoji: 🐢
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 3.38.0
app_file: app.py
pinned: false
license: cc-by-nc-nd-4.0
---
<!-- This github was Made by Nathan Gravel -->
# Phosformer-ST <img src="https://github.com/gravelCompBio/Phosformer-ST/assets/75225868/f375e377-b639-4b8c-9792-6d8e5e9e6c39" width="60">
## Introduction
This repository contains the code to run Phosformer-ST locally described in the manuscript "Phosformer-ST: explainable machine learning uncovers the kinase-substrate interaction landscape". This readme also provides instructions on all dependencies and packages required to run Phosformer-ST in a local environment.
</br>
## Quick overview of the dependencies
![Python](https://img.shields.io/badge/Python-FFD43B?style=for-the-badge&logo=python&logoColor=blue)
![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white)
![Jupyter](https://img.shields.io/badge/Jupyter-F37626.svg?&style=for-the-badge&logo=Jupyter&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?style=for-the-badge&logo=pytorch&logoColor=white)
![Numpy](https://img.shields.io/badge/Numpy-777BB4?style=for-the-badge&logo=numpy&logoColor=white)
![Pandas](https://img.shields.io/badge/Pandas-2C2D72?style=for-the-badge&logo=pandas&logoColor=white)
![Matplotlib](https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=for-the-badge&logo=Matplotlib&logoColor=black)
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white)
</br>
## Included in this repository are the following:
- `phos-ST_Example_Code.ipynb`: ipynb file with example code to run Phosformer-ST
- `modeling_esm.py`: Python file that has the architecture of Phosformer-ST
- `configuration_esm.py`: Python file that has configuration/parameters of Phosformer-ST
- `tokenization_esm.py`: Python file that contains code for the tokenizer
- `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`: this txt file contains a link to the training weights held on the hugging face or zenodo repository
- See section below (Downloading this repository) to be shown how to download this folder and where to put it
- `phosST.yml`: This file is used to help create an environment for Phosformer-ST to work
- `README.md`:
- `LICENSE`: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License
</br>
</br>
## Installing dependencies with version info
### From conda:
![python=3.9.16](https://img.shields.io/badge/Python-3.9.16-green)
![jupyterlab=4.0.0](https://img.shields.io/badge/jupyterlab-4.0.0-blue)
Python == 3.9.16
### From pip:
![numpy=1.24.3](https://img.shields.io/badge/numpy-1.24.3-blue)
![pandas=2.0.2](https://img.shields.io/badge/pandas-2.0.2-blue)
![matplotlib=3.7.1](https://img.shields.io/badge/matplotlib-3.7.1-blue)
![scikit-learn=1.2.2](https://img.shields.io/badge/scikitlearn-1.2.2-blue)
![tqdm=4.65.0](https://img.shields.io/badge/tqdm-4.64.1-blue)
![fair-esm=2.0.0](https://img.shields.io/pypi/v/fair-esm?label=fair-esm)
![transformers=4.31.0](https://img.shields.io/badge/transformers-4.31.0-blue)
![torch=2.0.1](https://img.shields.io/badge/torch-2.0.1-blue)
### For torch/PyTorch
Make sure you go to this website https://pytorch.org/get-started/locally/
Follow along with its recommendation
Installing torch can be the most complex part
</br>
</br>
## Downloading this repository
```
git clone https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights
```
```
cd Phosformer-ST_with_trainging_weights
```
The `Phosformer-ST_with_trainging_weights` folder should have the following files/folder in it
- file 1 `phos-ST_Example_Code.ipynb`
- file 2 `modeling_esm.py`
- file 3 `configuration_esm.py`
- file 4 `tokenization_esm.py`
- file 5 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`
- file 6 `phosST.yml`
- file 7 `Readme.md`
- file 8 `LICENSE`
- folder 1 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90`
- zipped folder 2 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.zip`
Once you have a folder with the files/folder above in it you have done all the downloading needed
</br>
</br>
## ![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white) Installing dependencies with conda
### PICK ONE of the options below
### Main Option) Utilizing the PhosformerST.yml file
here is a step-by-step guide to set up the environment with the yml file
Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
```
conda env create -f phosST.yml -n PhosST
```
```
conda deactivate
```
```
conda activate phosST
```
### Alternative option) Creating this environment without yml file
(This is if torch is not working with your version of cuda or any other problem)
Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed)
```
conda create -n phosST python=3.9
```
```
conda deactivate
```
```
conda activate phosST
```
```
conda install -c conda-forge jupyterlab
```
```
pip3 install numpy==1.24.3
```
```
pip3 install pandas==2.0.2
```
```
pip3 install matplotlib==3.7.1
```
```
pip3 install scikit-learn==1.2.2
```
```
pip3 install tqdm==4.65.0
```
```
pip3 install fair-esm==2.0.0
```
```
pip3 install transformers==4.31.0
```
### **For torch you will have to download to the torch's specification if you want gpu acceleration from this website** https://pytorch.org/get-started/locally/
```
pip3 install torch torchvision torchaudio
```
### the terminal line above might look different for you
We provided code to test Phosformer-ST (see section below)
</br>
</br>
## Utilizing the Model with our example code
All the following code examples is done inside of the `phos-ST_Example_Code.ipynb` file using jupyter lab
Once you have your environment resolved just use jupyter lab to access the example code by typing the command below in your terminal (when you're in the `Phosformer-ST` folder)
```
jupyter lab
```
Once you open the notebook on your browser, run each cell in the notebook
</br>
### Testing Phosformer-ST with the example code
There should be a positive control and a negative control example code at the bottom of the `phos-ST_Example_Code.ipynb` file which can be used to test the model.
**Positive Example**
```Python
# P17612 KAPCA_HUMAN
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
# P53602_S96_LARKRRNSRDGDPLP
substrate="LARKRRNSRDGDPLP"
phosST(kinDomain,substrate).to_csv('PostiveExample.csv')
```
**Negative Example**
```Python
# P17612 KAPCA_HUMAN
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF"
# Q01831_T169_PVEIEIETPEQAKTR
substrate="PVEIEIETPEQAKTR"
phosST(kinDomain,substrate).to_csv('NegitiveExample.csv')
```
Both scores should show up in a csv file in the current directory
</br>
### Inputting your own data for novel predictions
One can simply take the code from above and modify the string variables `kinDomain` and `substrate` to make predictions on any given kinase substrate pairs
**Formatting of the `kinDomain` and `substrate` for input for Phosformer-ST are as follows:**
- `kinDomain` should be a human Serine/Threonine kinase domain (not the full sequence).
- `substrate` should be a 15mer with the center residue/char being the target Serine or Threonine being phosphorylated
Not following these rules may result in dubious predictions
</br>
### How to interpret Phosformer-ST's output
This model outputs a prediction score between 1 and 0.
We trained the model to uses a cutoff of 0.5 to distinguish positive and negative predictions
A score of 0.5 or above indicates a positive prediction for peptide substrate phosphorylation by the given kinase
</br>
## Troubleshooting
If torch is not installing correctly or you do not have a GPU to run Phosformer-ST on, the CPU version of torch is perfectly fine to use
Using the CPU version of torch might increase your run time so for large prediction datasets GPU acceleration is suggested
If you just are here to test if it Phosformer-ST works, the example code should not take too much time to run on the CPU version of torch
Also depending on your GPU the `batch_size` argument might need to be adjusted
### The model has been tested on the following computers with the following specifications for trouble shooting proposes
</br>
**Computer 1**
NVIDIA Quadro RTX 5000 (16 GB vRAM)(CUDA Version: 12.1)
Ubuntu 22.04.2 LTS
Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
64 GB ram
</br>
**Computer 2**
NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)
Ubuntu 20.04.6 LTS
Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz (6 cores) x (1 thread per core)
64 GB ram
</br>
## Other accessory tools and resources
A webtool for Phosformer-ST can be accessed from: https://phosformer.netlify.app/. A huggingface repository can be downloaded from: https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights. A huggingface spaces app is available at: https://huggingface.co/spaces/gravelcompbio/Phosformer-ST
The github can be found here https://github.com/gravelCompBio/Phosformer-ST/tree/main
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference |