File size: 10,869 Bytes
9aedf73
 
6ced301
 
9aedf73
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
05f403c
 
 
 
 
 
 
 
 
6ced301
 
 
 
05f403c
6ced301
05f403c
6ced301
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
7a4f2a2
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
05f403c
6ced301
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
05f403c
6ced301
05f403c
6ced301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
05f403c
6ced301
 
 
05f403c
6ced301
 
 
 
 
 
 
 
 
05f403c
6ced301
05f403c
6ced301
 
05f403c
6ced301
 
05f403c
6ced301
 
 
 
 
 
 
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
05f403c
6ced301
05f403c
6ced301
 
05f403c
6ced301
05f403c
6ced301
05f403c
6ced301
05f403c
6ced301
05f403c
6ced301
 
 
05f403c
6ced301
05f403c
6ced301
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
05f403c
 
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
05f403c
6ced301
 
 
 
 
 
 
05f403c
 
6ced301
05f403c
 
6ced301
05f403c
6ced301
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
---
title: Phosformer ST
emoji: 🐢
colorFrom: gray
colorTo: pink
sdk: gradio
sdk_version: 3.38.0
app_file: app.py
pinned: false
license: cc-by-nc-nd-4.0
---
<!-- This github was Made by Nathan Gravel --> 

# Phosformer-ST  <img src="https://github.com/gravelCompBio/Phosformer-ST/assets/75225868/f375e377-b639-4b8c-9792-6d8e5e9e6c39" width="60"> 

  

## Introduction   

  

   


  

   

  

This repository contains the code to run Phosformer-ST locally described in the manuscript "Phosformer-ST: explainable machine learning uncovers the kinase-substrate interaction landscape". This readme also provides instructions on all dependencies and packages required to run Phosformer-ST in a local environment. 
</br> 

   

## Quick overview of the dependencies 

![Python](https://img.shields.io/badge/Python-FFD43B?style=for-the-badge&logo=python&logoColor=blue)
![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white)
![Jupyter](https://img.shields.io/badge/Jupyter-F37626.svg?&style=for-the-badge&logo=Jupyter&logoColor=white)
![PyTorch](https://img.shields.io/badge/PyTorch-EE4C2C?style=for-the-badge&logo=pytorch&logoColor=white)

  

![Numpy](https://img.shields.io/badge/Numpy-777BB4?style=for-the-badge&logo=numpy&logoColor=white) 
![Pandas](https://img.shields.io/badge/Pandas-2C2D72?style=for-the-badge&logo=pandas&logoColor=white) 
![Matplotlib](https://img.shields.io/badge/Matplotlib-%23ffffff.svg?style=for-the-badge&logo=Matplotlib&logoColor=black) 
![scikit-learn](https://img.shields.io/badge/scikit--learn-%23F7931E.svg?style=for-the-badge&logo=scikit-learn&logoColor=white) 

  

   

</br> 

  

  

## Included in this repository are the following:   

  

   

  

- `phos-ST_Example_Code.ipynb`: ipynb file with example code to run Phosformer-ST 

  

    - `modeling_esm.py`: Python file that has the architecture of Phosformer-ST 
    
      
    
    - `configuration_esm.py`: Python file that has configuration/parameters of Phosformer-ST  
    
      
    
    - `tokenization_esm.py`: Python file that contains code for the tokenizer  
  

  

- `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt`: this txt file contains a link to the training weights held on the hugging face or zenodo repository 

    - See section below (Downloading this repository) to be shown how to download this folder and where to put it
  

- `phosST.yml`: This file is used to help create an environment for Phosformer-ST to work 

   

- `README.md`: 

  

- `LICENSE`: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Public License 

  

  

    
  

</br> 

  

</br> 

  

    
  

## Installing dependencies with version info    

  

  

### From conda:    

  

![python=3.9.16](https://img.shields.io/badge/Python-3.9.16-green)  

  

![jupyterlab=4.0.0](https://img.shields.io/badge/jupyterlab-4.0.0-blue)  

  

Python == 3.9.16  

  

   

  

### From pip:  

  

   

  

![numpy=1.24.3](https://img.shields.io/badge/numpy-1.24.3-blue)  

  

![pandas=2.0.2](https://img.shields.io/badge/pandas-2.0.2-blue)  

  

![matplotlib=3.7.1](https://img.shields.io/badge/matplotlib-3.7.1-blue)  

  

![scikit-learn=1.2.2](https://img.shields.io/badge/scikitlearn-1.2.2-blue)  

  

![tqdm=4.65.0](https://img.shields.io/badge/tqdm-4.64.1-blue) 

  

![fair-esm=2.0.0](https://img.shields.io/pypi/v/fair-esm?label=fair-esm)   

  

![transformers=4.31.0](https://img.shields.io/badge/transformers-4.31.0-blue)  

  

![torch=2.0.1](https://img.shields.io/badge/torch-2.0.1-blue)      

  

### For torch/PyTorch 

  

Make sure you go to this website https://pytorch.org/get-started/locally/ 

  

Follow along with its recommendation  

  

Installing torch can be the most complex part  

  
  
  

  

</br> 

  

</br> 


   

  

## Downloading this repository   

  

```   
git clone https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights
```   

  

```   
cd Phosformer-ST_with_trainging_weights
``` 

  

  

The `Phosformer-ST_with_trainging_weights` folder should have the following files/folder in it 

  

- file 1 `phos-ST_Example_Code.ipynb` 

  

- file 2 `modeling_esm.py` 

   

- file 3 `configuration_esm.py` 

  

- file 4 `tokenization_esm.py` 

  

- file 5 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.txt` 

  

- file 6 `phosST.yml` 

   

- file 7 `Readme.md`



- file 8 `LICENSE`



- folder 1 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90`



- zipped folder 2 `multitask_MHA_esm2_t30_150M_UR50D_neg_ratio_8+8_shift_30_mask_0.2_2023-03-25_90.zip` 


  

Once you have a folder with the files/folder above in it you have done all the downloading needed 

  

  

</br> 

  

</br> 

  

   

  

## ![Anaconda](https://img.shields.io/badge/Anaconda-%2344A833.svg?style=for-the-badge&logo=anaconda&logoColor=white) Installing dependencies with conda  

  

### PICK ONE of the options below  

### Main Option) Utilizing the PhosformerST.yml file 

here is a step-by-step guide to set up the environment with the yml file  

  

Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed) 

  

```   
conda env create -f phosST.yml -n PhosST  
```   

```   
conda deactivate 
```   

```   
conda activate phosST  
```   

  

### Alternative option) Creating this environment without yml file 

(This is if torch is not working with your version of cuda or any other problem) 

Just type these lines of code into the terminal after you download this repository (this assumes you have anaconda already installed) 

```   
conda create -n phosST python=3.9  
``` 

```   
conda deactivate 
``` 

```   
conda activate phosST  
``` 

```   
conda install -c conda-forge jupyterlab 
``` 

```   
pip3 install numpy==1.24.3 
``` 

```   
pip3 install pandas==2.0.2 
``` 

```   
pip3 install matplotlib==3.7.1 
``` 

```   
pip3 install scikit-learn==1.2.2 
``` 

```   
pip3 install tqdm==4.65.0 
``` 

```   
pip3 install fair-esm==2.0.0 
``` 

```   
pip3 install transformers==4.31.0 
``` 

### **For torch you will have to download to the torch's specification if you want gpu acceleration from this website** https://pytorch.org/get-started/locally/ 

  

```   
pip3 install torch torchvision torchaudio 
``` 

  

### the terminal line above might look different for you  

  

We provided code to test Phosformer-ST (see section below) 

  

  

</br> 

  

</br> 

  

  

  

## Utilizing the Model with our example code 

All the following code examples is done inside of the `phos-ST_Example_Code.ipynb` file using jupyter lab 

  

Once you have your environment resolved just use jupyter lab to access the example code by typing the command below in your terminal (when you're in the `Phosformer-ST` folder)  

```   
jupyter lab 
``` 

Once you open the notebook on your browser, run each cell in the notebook  

  

</br> 

  

### Testing Phosformer-ST with the example code 

There should be a positive control and a negative control example code at the bottom of the `phos-ST_Example_Code.ipynb` file which can be used to test the model. 
  

**Positive Example** 

```Python 
# P17612 KAPCA_HUMAN 
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF" 
# P53602_S96_LARKRRNSRDGDPLP 
substrate="LARKRRNSRDGDPLP" 
  
phosST(kinDomain,substrate).to_csv('PostiveExample.csv') 
``` 

  

  

**Negative Example** 

```Python 
# P17612 KAPCA_HUMAN 
kinDomain="FERIKTLGTGSFGRVMLVKHKETGNHYAMKILDKQKVVKLKQIEHTLNEKRILQAVNFPFLVKLEFSFKDNSNLYMVMEYVPGGEMFSHLRRIGRFSEPHARFYAAQIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWTLCGTPEYLAPEIILSKGYNKAVDWWALGVLIYEMAAGYPPFFADQPIQIYEKIVSGKVRFPSHFSSDLKDLLRNLLQVDLTKRFGNLKNGVNDIKNHKWF" 
# Q01831_T169_PVEIEIETPEQAKTR 
substrate="PVEIEIETPEQAKTR" 
  
phosST(kinDomain,substrate).to_csv('NegitiveExample.csv') 
``` 

Both scores should show up in a csv file in the current directory

  

</br> 

  

### Inputting your own data for novel predictions 

One can simply take the code from above and modify the string variables `kinDomain` and `substrate` to make predictions on any given kinase substrate pairs 

  

**Formatting of the `kinDomain` and `substrate` for input for Phosformer-ST are as follows:** 

  

  - `kinDomain` should be a human Serine/Threonine kinase domain (not the full sequence).
     
  - `substrate` should be a 15mer with the center residue/char being the target Serine or Threonine being phosphorylated 

  

Not following these rules may result in dubious predictions  

  

  

</br> 

  

### How to interpret Phosformer-ST's output 

This model outputs a prediction score between 1 and 0.


We trained the model to uses a cutoff of 0.5 to distinguish positive and negative predictions 


A score of 0.5 or above indicates a positive prediction for peptide substrate phosphorylation by the given kinase

  
  

</br> 

  
  

## Troubleshooting 

  

If torch is not installing correctly or you do not have a GPU to run Phosformer-ST on, the CPU version of torch is perfectly fine to use 

  

Using the CPU version of torch might increase your run time so for large prediction datasets GPU acceleration is suggested 

  

If you just are here to test if it Phosformer-ST works, the example code should not take too much time to run on the CPU version of torch   

  

Also depending on your GPU the `batch_size` argument might need to be adjusted 


### The model has been tested on the following computers with the following specifications for trouble shooting proposes 

  

</br> 

  

**Computer 1** 



NVIDIA Quadro RTX 5000 (16 GB vRAM)(CUDA Version: 12.1)  

  

Ubuntu 22.04.2 LTS 

  

Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz  (6 cores) x (1 thread per core) 

  

64 GB ram 



  

</br> 

  

**Computer 2** 



NVIDIA RTX A4000 (16 GB vRAM)(CUDA Version: 12.2)  

  

Ubuntu 20.04.6 LTS 

  

Intel(R) Xeon(R) Bronze 3204 CPU @ 1.90GHz  (6 cores) x (1 thread per core) 

  

64 GB ram 

  





</br> 


## Other accessory tools and resources
A webtool for Phosformer-ST can be accessed from: https://phosformer.netlify.app/. A huggingface repository can be downloaded from: https://huggingface.co/gravelcompbio/Phosformer-ST_with_trainging_weights. A huggingface spaces app is available at: https://huggingface.co/spaces/gravelcompbio/Phosformer-ST

The github can be found here https://github.com/gravelCompBio/Phosformer-ST/tree/main 

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference