File size: 2,369 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
import numpy as np
import torch.nn as nn
import torch
import torch.nn.functional as F
class ResnetEncoder(nn.Module):
def __init__(self, append_layers=None):
super(ResnetEncoder, self).__init__()
from . import resnet
# feature_size = 2048
self.feature_dim = 2048
self.encoder = resnet.load_ResNet50Model() # out: 2048
# regressor
self.append_layers = append_layers
# for normalize input images
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
self.register_buffer('MEAN', torch.tensor(MEAN)[None, :, None, None])
self.register_buffer('STD', torch.tensor(STD)[None, :, None, None])
def forward(self, inputs):
''' inputs: [bz, 3, h, w], range: [0,1]
'''
inputs = (inputs - self.MEAN) / self.STD
features = self.encoder(inputs)
if self.append_layers:
features = self.last_op(features)
return features
class MLP(nn.Module):
def __init__(self, channels=[2048, 1024, 1], last_op=None):
super(MLP, self).__init__()
layers = []
for l in range(0, len(channels) - 1):
layers.append(nn.Linear(channels[l], channels[l + 1]))
if l < len(channels) - 2:
layers.append(nn.ReLU())
if last_op:
layers.append(last_op)
self.layers = nn.Sequential(*layers)
def forward(self, inputs):
outs = self.layers(inputs)
return outs
class HRNEncoder(nn.Module):
def __init__(self, append_layers=None):
super(HRNEncoder, self).__init__()
from . import hrnet
self.feature_dim = 2048
self.encoder = hrnet.load_HRNet(pretrained=True) # out: 2048
# regressor
self.append_layers = append_layers
# for normalize input images
MEAN = [0.485, 0.456, 0.406]
STD = [0.229, 0.224, 0.225]
self.register_buffer('MEAN', torch.tensor(MEAN)[None, :, None, None])
self.register_buffer('STD', torch.tensor(STD)[None, :, None, None])
def forward(self, inputs):
''' inputs: [bz, 3, h, w], range: [0,1]
'''
inputs = (inputs - self.MEAN) / self.STD
features = self.encoder(inputs)['concat']
if self.append_layers:
features = self.last_op(features)
return features
|