File size: 13,938 Bytes
2252f3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
import torch.nn as nn
import numpy as np

from lib.pymaf.utils.geometry import rot6d_to_rotmat, projection, rotation_matrix_to_angle_axis
from .maf_extractor import MAF_Extractor
from .smpl import SMPL, SMPL_MODEL_DIR, SMPL_MEAN_PARAMS, H36M_TO_J14
from .hmr import ResNet_Backbone
from .res_module import IUV_predict_layer
from lib.common.config import cfg
import logging

logger = logging.getLogger(__name__)

BN_MOMENTUM = 0.1


class Regressor(nn.Module):

    def __init__(self, feat_dim, smpl_mean_params):
        super().__init__()

        npose = 24 * 6

        self.fc1 = nn.Linear(feat_dim + npose + 13, 1024)
        self.drop1 = nn.Dropout()
        self.fc2 = nn.Linear(1024, 1024)
        self.drop2 = nn.Dropout()
        self.decpose = nn.Linear(1024, npose)
        self.decshape = nn.Linear(1024, 10)
        self.deccam = nn.Linear(1024, 3)
        nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
        nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
        nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)

        self.smpl = SMPL(SMPL_MODEL_DIR, batch_size=64, create_transl=False)

        mean_params = np.load(smpl_mean_params)
        init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
        init_shape = torch.from_numpy(
            mean_params['shape'][:].astype('float32')).unsqueeze(0)
        init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
        self.register_buffer('init_pose', init_pose)
        self.register_buffer('init_shape', init_shape)
        self.register_buffer('init_cam', init_cam)

    def forward(self,
                x,
                init_pose=None,
                init_shape=None,
                init_cam=None,
                n_iter=1,
                J_regressor=None):
        batch_size = x.shape[0]

        if init_pose is None:
            init_pose = self.init_pose.expand(batch_size, -1)
        if init_shape is None:
            init_shape = self.init_shape.expand(batch_size, -1)
        if init_cam is None:
            init_cam = self.init_cam.expand(batch_size, -1)

        pred_pose = init_pose
        pred_shape = init_shape
        pred_cam = init_cam
        for i in range(n_iter):
            xc = torch.cat([x, pred_pose, pred_shape, pred_cam], 1)
            xc = self.fc1(xc)
            xc = self.drop1(xc)
            xc = self.fc2(xc)
            xc = self.drop2(xc)
            pred_pose = self.decpose(xc) + pred_pose
            pred_shape = self.decshape(xc) + pred_shape
            pred_cam = self.deccam(xc) + pred_cam

        pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3)

        pred_output = self.smpl(betas=pred_shape,
                                body_pose=pred_rotmat[:, 1:],
                                global_orient=pred_rotmat[:, 0].unsqueeze(1),
                                pose2rot=False)

        pred_vertices = pred_output.vertices
        pred_joints = pred_output.joints
        pred_smpl_joints = pred_output.smpl_joints
        pred_keypoints_2d = projection(pred_joints, pred_cam)
        pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3,
                                                                 3)).reshape(
                                                                     -1, 72)

        if J_regressor is not None:
            pred_joints = torch.matmul(J_regressor, pred_vertices)
            pred_pelvis = pred_joints[:, [0], :].clone()
            pred_joints = pred_joints[:, H36M_TO_J14, :]
            pred_joints = pred_joints - pred_pelvis

        output = {
            'theta': torch.cat([pred_cam, pred_shape, pose], dim=1),
            'verts': pred_vertices,
            'kp_2d': pred_keypoints_2d,
            'kp_3d': pred_joints,
            'smpl_kp_3d': pred_smpl_joints,
            'rotmat': pred_rotmat,
            'pred_cam': pred_cam,
            'pred_shape': pred_shape,
            'pred_pose': pred_pose,
        }
        return output

    def forward_init(self,
                     x,
                     init_pose=None,
                     init_shape=None,
                     init_cam=None,
                     n_iter=1,
                     J_regressor=None):
        batch_size = x.shape[0]

        if init_pose is None:
            init_pose = self.init_pose.expand(batch_size, -1)
        if init_shape is None:
            init_shape = self.init_shape.expand(batch_size, -1)
        if init_cam is None:
            init_cam = self.init_cam.expand(batch_size, -1)

        pred_pose = init_pose
        pred_shape = init_shape
        pred_cam = init_cam

        pred_rotmat = rot6d_to_rotmat(pred_pose.contiguous()).view(
            batch_size, 24, 3, 3)

        pred_output = self.smpl(betas=pred_shape,
                                body_pose=pred_rotmat[:, 1:],
                                global_orient=pred_rotmat[:, 0].unsqueeze(1),
                                pose2rot=False)

        pred_vertices = pred_output.vertices
        pred_joints = pred_output.joints
        pred_smpl_joints = pred_output.smpl_joints
        pred_keypoints_2d = projection(pred_joints, pred_cam)
        pose = rotation_matrix_to_angle_axis(pred_rotmat.reshape(-1, 3,
                                                                 3)).reshape(
                                                                     -1, 72)

        if J_regressor is not None:
            pred_joints = torch.matmul(J_regressor, pred_vertices)
            pred_pelvis = pred_joints[:, [0], :].clone()
            pred_joints = pred_joints[:, H36M_TO_J14, :]
            pred_joints = pred_joints - pred_pelvis

        output = {
            'theta': torch.cat([pred_cam, pred_shape, pose], dim=1),
            'verts': pred_vertices,
            'kp_2d': pred_keypoints_2d,
            'kp_3d': pred_joints,
            'smpl_kp_3d': pred_smpl_joints,
            'rotmat': pred_rotmat,
            'pred_cam': pred_cam,
            'pred_shape': pred_shape,
            'pred_pose': pred_pose,
        }
        return output


class PyMAF(nn.Module):
    """ PyMAF based Deep Regressor for Human Mesh Recovery
    PyMAF: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop, in ICCV, 2021
    """

    def __init__(self, smpl_mean_params=SMPL_MEAN_PARAMS, pretrained=True):
        super().__init__()
        self.feature_extractor = ResNet_Backbone(
            model=cfg.MODEL.PyMAF.BACKBONE, pretrained=pretrained)

        # deconv layers
        self.inplanes = self.feature_extractor.inplanes
        self.deconv_with_bias = cfg.RES_MODEL.DECONV_WITH_BIAS
        self.deconv_layers = self._make_deconv_layer(
            cfg.RES_MODEL.NUM_DECONV_LAYERS,
            cfg.RES_MODEL.NUM_DECONV_FILTERS,
            cfg.RES_MODEL.NUM_DECONV_KERNELS,
        )

        self.maf_extractor = nn.ModuleList()
        for _ in range(cfg.MODEL.PyMAF.N_ITER):
            self.maf_extractor.append(MAF_Extractor())
        ma_feat_len = self.maf_extractor[-1].Dmap.shape[
            0] * cfg.MODEL.PyMAF.MLP_DIM[-1]

        grid_size = 21
        xv, yv = torch.meshgrid([
            torch.linspace(-1, 1, grid_size),
            torch.linspace(-1, 1, grid_size)
        ])
        points_grid = torch.stack([xv.reshape(-1),
                                   yv.reshape(-1)]).unsqueeze(0)
        self.register_buffer('points_grid', points_grid)
        grid_feat_len = grid_size * grid_size * cfg.MODEL.PyMAF.MLP_DIM[-1]

        self.regressor = nn.ModuleList()
        for i in range(cfg.MODEL.PyMAF.N_ITER):
            if i == 0:
                ref_infeat_dim = grid_feat_len
            else:
                ref_infeat_dim = ma_feat_len
            self.regressor.append(
                Regressor(feat_dim=ref_infeat_dim,
                          smpl_mean_params=smpl_mean_params))

        dp_feat_dim = 256
        self.with_uv = cfg.LOSS.POINT_REGRESSION_WEIGHTS > 0
        if cfg.MODEL.PyMAF.AUX_SUPV_ON:
            self.dp_head = IUV_predict_layer(feat_dim=dp_feat_dim)

    def _make_layer(self, block, planes, blocks, stride=1):
        downsample = None
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes,
                          planes * block.expansion,
                          kernel_size=1,
                          stride=stride,
                          bias=False),
                nn.BatchNorm2d(planes * block.expansion),
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, downsample))
        self.inplanes = planes * block.expansion
        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes))

        return nn.Sequential(*layers)

    def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
        """
        Deconv_layer used in Simple Baselines:
        Xiao et al. Simple Baselines for Human Pose Estimation and Tracking
        https://github.com/microsoft/human-pose-estimation.pytorch
        """
        assert num_layers == len(num_filters), \
            'ERROR: num_deconv_layers is different len(num_deconv_filters)'
        assert num_layers == len(num_kernels), \
            'ERROR: num_deconv_layers is different len(num_deconv_filters)'

        def _get_deconv_cfg(deconv_kernel, index):
            if deconv_kernel == 4:
                padding = 1
                output_padding = 0
            elif deconv_kernel == 3:
                padding = 1
                output_padding = 1
            elif deconv_kernel == 2:
                padding = 0
                output_padding = 0

            return deconv_kernel, padding, output_padding

        layers = []
        for i in range(num_layers):
            kernel, padding, output_padding = _get_deconv_cfg(
                num_kernels[i], i)

            planes = num_filters[i]
            layers.append(
                nn.ConvTranspose2d(in_channels=self.inplanes,
                                   out_channels=planes,
                                   kernel_size=kernel,
                                   stride=2,
                                   padding=padding,
                                   output_padding=output_padding,
                                   bias=self.deconv_with_bias))
            layers.append(nn.BatchNorm2d(planes, momentum=BN_MOMENTUM))
            layers.append(nn.ReLU(inplace=True))
            self.inplanes = planes

        return nn.Sequential(*layers)

    def forward(self, x, J_regressor=None):

        batch_size = x.shape[0]

        # spatial features and global features
        s_feat, g_feat = self.feature_extractor(x)

        assert cfg.MODEL.PyMAF.N_ITER >= 0 and cfg.MODEL.PyMAF.N_ITER <= 3
        if cfg.MODEL.PyMAF.N_ITER == 1:
            deconv_blocks = [self.deconv_layers]
        elif cfg.MODEL.PyMAF.N_ITER == 2:
            deconv_blocks = [self.deconv_layers[0:6], self.deconv_layers[6:9]]
        elif cfg.MODEL.PyMAF.N_ITER == 3:
            deconv_blocks = [
                self.deconv_layers[0:3], self.deconv_layers[3:6],
                self.deconv_layers[6:9]
            ]

        out_list = {}

        # initial parameters
        # TODO: remove the initial mesh generation during forward to reduce runtime
        # by generating initial mesh the beforehand: smpl_output = self.init_smpl
        smpl_output = self.regressor[0].forward_init(g_feat,
                                                     J_regressor=J_regressor)

        out_list['smpl_out'] = [smpl_output]
        out_list['dp_out'] = []

        # for visulization
        vis_feat_list = [s_feat.detach()]

        # parameter predictions
        for rf_i in range(cfg.MODEL.PyMAF.N_ITER):
            pred_cam = smpl_output['pred_cam']
            pred_shape = smpl_output['pred_shape']
            pred_pose = smpl_output['pred_pose']

            pred_cam = pred_cam.detach()
            pred_shape = pred_shape.detach()
            pred_pose = pred_pose.detach()

            s_feat_i = deconv_blocks[rf_i](s_feat)
            s_feat = s_feat_i
            vis_feat_list.append(s_feat_i.detach())

            self.maf_extractor[rf_i].im_feat = s_feat_i
            self.maf_extractor[rf_i].cam = pred_cam

            if rf_i == 0:
                sample_points = torch.transpose(
                    self.points_grid.expand(batch_size, -1, -1), 1, 2)
                ref_feature = self.maf_extractor[rf_i].sampling(sample_points)
            else:
                pred_smpl_verts = smpl_output['verts'].detach()
                # TODO: use a more sparse SMPL implementation (with 431 vertices) for acceleration
                pred_smpl_verts_ds = torch.matmul(
                    self.maf_extractor[rf_i].Dmap.unsqueeze(0),
                    pred_smpl_verts)  # [B, 431, 3]
                ref_feature = self.maf_extractor[rf_i](
                    pred_smpl_verts_ds)  # [B, 431 * n_feat]

            smpl_output = self.regressor[rf_i](ref_feature,
                                               pred_pose,
                                               pred_shape,
                                               pred_cam,
                                               n_iter=1,
                                               J_regressor=J_regressor)
            out_list['smpl_out'].append(smpl_output)

        if self.training and cfg.MODEL.PyMAF.AUX_SUPV_ON:
            iuv_out_dict = self.dp_head(s_feat)
            out_list['dp_out'].append(iuv_out_dict)

        return out_list


def pymaf_net(smpl_mean_params, pretrained=True):
    """ Constructs an PyMAF model with ResNet50 backbone.
    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
    """
    model = PyMAF(smpl_mean_params, pretrained)
    return model