File size: 11,278 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.net.net_util import *
import torch.nn as nn
import torch.nn.functional as F
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features, opt):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.opt = opt
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b2_' + str(level),
ConvBlock(self.features, self.features, self.opt))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level),
ConvBlock(self.features, self.features, self.opt))
self.add_module('b3_' + str(level),
ConvBlock(self.features, self.features, self.opt))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
# NOTE: for newer PyTorch (1.3~), it seems that training results are degraded due to implementation diff in F.grid_sample
# if the pretrained model behaves weirdly, switch with the commented line.
# NOTE: I also found that "bicubic" works better.
up2 = F.interpolate(low3,
scale_factor=2,
mode='bicubic',
align_corners=True)
# up2 = F.interpolate(low3, scale_factor=2, mode='nearest)
return up1 + up2
def forward(self, x):
return self._forward(self.depth, x)
class HGFilter(nn.Module):
def __init__(self, opt, num_modules, in_dim):
super(HGFilter, self).__init__()
self.num_modules = num_modules
self.opt = opt
[k, s, d, p] = self.opt.conv1
# self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3)
self.conv1 = nn.Conv2d(in_dim,
64,
kernel_size=k,
stride=s,
dilation=d,
padding=p)
if self.opt.norm == 'batch':
self.bn1 = nn.BatchNorm2d(64)
elif self.opt.norm == 'group':
self.bn1 = nn.GroupNorm(32, 64)
if self.opt.hg_down == 'conv64':
self.conv2 = ConvBlock(64, 64, self.opt)
self.down_conv2 = nn.Conv2d(64,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'conv128':
self.conv2 = ConvBlock(64, 128, self.opt)
self.down_conv2 = nn.Conv2d(128,
128,
kernel_size=3,
stride=2,
padding=1)
elif self.opt.hg_down == 'ave_pool':
self.conv2 = ConvBlock(64, 128, self.opt)
else:
raise NameError('Unknown Fan Filter setting!')
self.conv3 = ConvBlock(128, 128, self.opt)
self.conv4 = ConvBlock(128, 256, self.opt)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module),
HourGlass(1, opt.num_hourglass, 256, self.opt))
self.add_module('top_m_' + str(hg_module),
ConvBlock(256, 256, self.opt))
self.add_module(
'conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
if self.opt.norm == 'batch':
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
elif self.opt.norm == 'group':
self.add_module('bn_end' + str(hg_module),
nn.GroupNorm(32, 256))
self.add_module(
'l' + str(hg_module),
nn.Conv2d(256,
opt.hourglass_dim,
kernel_size=1,
stride=1,
padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
'al' + str(hg_module),
nn.Conv2d(opt.hourglass_dim,
256,
kernel_size=1,
stride=1,
padding=0))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)), True)
tmpx = x
if self.opt.hg_down == 'ave_pool':
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
elif self.opt.hg_down in ['conv64', 'conv128']:
x = self.conv2(x)
x = self.down_conv2(x)
else:
raise NameError('Unknown Fan Filter setting!')
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(
self._modules['bn_end' + str(i)](
self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs
class FuseHGFilter(nn.Module):
def __init__(self, opt, num_modules, in_dim):
super(FuseHGFilter, self).__init__()
self.num_modules = num_modules
self.opt = opt
[k, s, d, p] = self.opt.conv1
# self.conv1 = nn.Conv2d(in_dim, 64, kernel_size=7, stride=2, padding=3)
self.conv1 = nn.Conv2d(in_dim,
64,
kernel_size=k,
stride=s,
dilation=d,
padding=p)
if self.opt.norm == 'batch':
self.bn1 = nn.BatchNorm2d(64)
elif self.opt.norm == 'group':
self.bn1 = nn.GroupNorm(32, 64)
self.conv2 = ConvBlock(64, 128, self.opt)
self.down_conv2 = nn.Conv2d(128,
96,
kernel_size=3,
stride=2,
padding=1)
# elif self.opt.hg_down == 'conv128':
# self.conv2 = ConvBlock(64, 128, self.opt)
# self.down_conv2 = nn.Conv2d(128,
# 128,
# kernel_size=3,
# stride=2,
# padding=1)
dim=96+32
self.conv3 = ConvBlock(dim, dim, self.opt)
self.conv4 = ConvBlock(dim, 256, self.opt)
# Stacking part
for hg_module in range(self.num_modules):
self.add_module('m' + str(hg_module),
HourGlass(1, opt.num_hourglass, 256, self.opt))
self.add_module('top_m_' + str(hg_module),
ConvBlock(256, 256, self.opt))
self.add_module(
'conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
if self.opt.norm == 'batch':
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
elif self.opt.norm == 'group':
self.add_module('bn_end' + str(hg_module),
nn.GroupNorm(32, 256))
hourglass_dim=256
self.add_module(
'l' + str(hg_module),
nn.Conv2d(256,
hourglass_dim,
kernel_size=1,
stride=1,
padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module(
'al' + str(hg_module),
nn.Conv2d(hourglass_dim,
256,
kernel_size=1,
stride=1,
padding=0))
self.up_conv=nn.ConvTranspose2d(hourglass_dim,64,kernel_size=2,stride=2)
def forward(self, x,plane):
x = F.relu(self.bn1(self.conv1(x)), True) # 64*256*256
tmpx = x
x = self.conv2(x)
x = self.down_conv2(x)
x=torch.cat([x,plane],1) # 128*128*128
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
for i in range(self.num_modules):
hg = self._modules['m' + str(i)](previous)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(
self._modules['bn_end' + str(i)](
self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
outputs.append(tmp_out)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
out=self.up_conv(outputs[-1])
return out |