File size: 12,269 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
import os
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
import cv2
import mediapipe as mp
import torch
import numpy as np
import torch.nn.functional as F
from PIL import Image
from lib.pymafx.core import constants
from rembg import remove
# from rembg.session_factory import new_session
from torchvision import transforms
from kornia.geometry.transform import get_affine_matrix2d, warp_affine
def transform_to_tensor(res, mean=None, std=None, is_tensor=False):
all_ops = []
if res is not None:
all_ops.append(transforms.Resize(size=res))
if not is_tensor:
all_ops.append(transforms.ToTensor())
if mean is not None and std is not None:
all_ops.append(transforms.Normalize(mean=mean, std=std))
return transforms.Compose(all_ops)
def get_affine_matrix_wh(w1, h1, w2, h2):
transl = torch.tensor([(w2 - w1) / 2.0, (h2 - h1) / 2.0]).unsqueeze(0)
center = torch.tensor([w1 / 2.0, h1 / 2.0]).unsqueeze(0)
scale = torch.min(torch.tensor([w2 / w1, h2 / h1])).repeat(2).unsqueeze(0)
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.]))
return M
def get_affine_matrix_box(boxes, w2, h2):
# boxes [left, top, right, bottom]
width = boxes[:, 2] - boxes[:, 0] #(N,)
height = boxes[:, 3] - boxes[:, 1] #(N,)
center = torch.tensor(
[(boxes[:, 0] + boxes[:, 2]) / 2.0, (boxes[:, 1] + boxes[:, 3]) / 2.0]
).T #(N,2)
scale = torch.min(torch.tensor([w2 / width, h2 / height]),
dim=0)[0].unsqueeze(1).repeat(1, 2) * 0.9 #(N,2)
transl = torch.cat([w2 / 2.0 - center[:, 0:1], h2 / 2.0 - center[:, 1:2]], dim=1) #(N,2)
M = get_affine_matrix2d(transl, center, scale, angle=torch.tensor([0.,]*transl.shape[0]))
return M
def load_img(img_file):
if img_file.endswith("exr"):
img = cv2.imread(img_file, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
else :
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
# considering non 8-bit image
if img.dtype != np.uint8 :
img = cv2.normalize(img, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return torch.tensor(img).permute(2, 0, 1).unsqueeze(0).float(), img.shape[:2]
def get_keypoints(image):
def collect_xyv(x, body=True):
lmk = x.landmark
all_lmks = []
for i in range(len(lmk)):
visibility = lmk[i].visibility if body else 1.0
all_lmks.append(torch.Tensor([lmk[i].x, lmk[i].y, lmk[i].z, visibility]))
return torch.stack(all_lmks).view(-1, 4)
mp_holistic = mp.solutions.holistic
with mp_holistic.Holistic(
static_image_mode=True,
model_complexity=2,
) as holistic:
results = holistic.process(image)
fake_kps = torch.zeros(33, 4)
result = {}
result["body"] = collect_xyv(results.pose_landmarks) if results.pose_landmarks else fake_kps
result["lhand"] = collect_xyv(
results.left_hand_landmarks, False
) if results.left_hand_landmarks else fake_kps
result["rhand"] = collect_xyv(
results.right_hand_landmarks, False
) if results.right_hand_landmarks else fake_kps
result["face"] = collect_xyv(
results.face_landmarks, False
) if results.face_landmarks else fake_kps
return result
def get_pymafx(image, landmarks):
# image [3,512,512]
item = {
'img_body':
F.interpolate(image.unsqueeze(0), size=224, mode='bicubic', align_corners=True)[0]
}
for part in ['lhand', 'rhand', 'face']:
kp2d = landmarks[part]
kp2d_valid = kp2d[kp2d[:, 3] > 0.]
if len(kp2d_valid) > 0:
bbox = [
min(kp2d_valid[:, 0]),
min(kp2d_valid[:, 1]),
max(kp2d_valid[:, 0]),
max(kp2d_valid[:, 1])
]
center_part = [(bbox[2] + bbox[0]) / 2., (bbox[3] + bbox[1]) / 2.]
scale_part = 2. * max(bbox[2] - bbox[0], bbox[3] - bbox[1]) / 2
# handle invalid part keypoints
if len(kp2d_valid) < 1 or scale_part < 0.01:
center_part = [0, 0]
scale_part = 0.5
kp2d[:, 3] = 0
center_part = torch.tensor(center_part).float()
theta_part = torch.zeros(1, 2, 3)
theta_part[:, 0, 0] = scale_part
theta_part[:, 1, 1] = scale_part
theta_part[:, :, -1] = center_part
grid = F.affine_grid(theta_part, torch.Size([1, 3, 224, 224]), align_corners=False)
img_part = F.grid_sample(image.unsqueeze(0), grid, align_corners=False).squeeze(0).float()
item[f'img_{part}'] = img_part
theta_i_inv = torch.zeros_like(theta_part)
theta_i_inv[:, 0, 0] = 1. / theta_part[:, 0, 0]
theta_i_inv[:, 1, 1] = 1. / theta_part[:, 1, 1]
theta_i_inv[:, :, -1] = -theta_part[:, :, -1] / theta_part[:, 0, 0].unsqueeze(-1)
item[f'{part}_theta_inv'] = theta_i_inv[0]
return item
def remove_floats(mask):
# 1. find all the contours
# 2. fillPoly "True" for the largest one
# 3. fillPoly "False" for its childrens
new_mask = np.zeros(mask.shape)
cnts, hier = cv2.findContours(mask.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt_index = sorted(range(len(cnts)), key=lambda k: cv2.contourArea(cnts[k]), reverse=True)
body_cnt = cnts[cnt_index[0]]
childs_cnt_idx = np.where(np.array(hier)[0, :, -1] == cnt_index[0])[0]
childs_cnt = [cnts[idx] for idx in childs_cnt_idx]
cv2.fillPoly(new_mask, [body_cnt], 1)
cv2.fillPoly(new_mask, childs_cnt, 0)
return new_mask
def econ_process_image(img_file, hps_type, single, input_res, detector):
img_raw, (in_height, in_width) = load_img(img_file)
tgt_res = input_res * 2
M_square = get_affine_matrix_wh(in_width, in_height, tgt_res, tgt_res)
img_square = warp_affine(
img_raw,
M_square[:, :2], (tgt_res, ) * 2,
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
# detection for bbox
predictions = detector(img_square / 255.)[0]
if single:
top_score = predictions["scores"][predictions["labels"] == 1].max()
human_ids = torch.where(predictions["scores"] == top_score)[0]
else:
human_ids = torch.logical_and(predictions["labels"] == 1,
predictions["scores"] > 0.9).nonzero().squeeze(1)
boxes = predictions["boxes"][human_ids, :].detach().cpu().numpy()
masks = predictions["masks"][human_ids, :, :].permute(0, 2, 3, 1).detach().cpu().numpy()
M_crop = get_affine_matrix_box(boxes, input_res, input_res)
img_icon_lst = []
img_crop_lst = []
img_hps_lst = []
img_mask_lst = []
landmark_lst = []
hands_visibility_lst = []
img_pymafx_lst = []
uncrop_param = {
"ori_shape": [in_height, in_width],
"box_shape": [input_res, input_res],
"square_shape": [tgt_res, tgt_res],
"M_square": M_square,
"M_crop": M_crop
}
for idx in range(len(boxes)):
# mask out the pixels of others
if len(masks) > 1:
mask_detection = (masks[np.arange(len(masks)) != idx]).max(axis=0)
else:
mask_detection = masks[0] * 0.
img_square_rgba = torch.cat(
[img_square.squeeze(0).permute(1, 2, 0),
torch.tensor(mask_detection < 0.4) * 255],
dim=2
)
img_crop = warp_affine(
img_square_rgba.unsqueeze(0).permute(0, 3, 1, 2),
M_crop[idx:idx + 1, :2], (input_res, ) * 2,
mode='bilinear',
padding_mode='zeros',
align_corners=True
).squeeze(0).permute(1, 2, 0).numpy().astype(np.uint8)
# get accurate person segmentation mask
img_rembg = remove(img_crop) #post_process_mask=True)
img_mask = remove_floats(img_rembg[:, :, [3]])
mean_icon = std_icon = (0.5, 0.5, 0.5)
img_np = (img_rembg[..., :3] * img_mask).astype(np.uint8)
img_icon = transform_to_tensor(512, mean_icon, std_icon)(
Image.fromarray(img_np)
) * torch.tensor(img_mask).permute(2, 0, 1)
img_hps = transform_to_tensor(224, constants.IMG_NORM_MEAN,
constants.IMG_NORM_STD)(Image.fromarray(img_np))
landmarks = get_keypoints(img_np)
# get hands visibility
hands_visibility = [True, True]
if landmarks['lhand'][:, -1].mean() == 0.:
hands_visibility[0] = False
if landmarks['rhand'][:, -1].mean() == 0.:
hands_visibility[1] = False
hands_visibility_lst.append(hands_visibility)
if hps_type == 'pymafx':
img_pymafx_lst.append(
get_pymafx(
transform_to_tensor(512, constants.IMG_NORM_MEAN,
constants.IMG_NORM_STD)(Image.fromarray(img_np)), landmarks
)
)
img_crop_lst.append(torch.tensor(img_crop).permute(2, 0, 1) / 255.0)
img_icon_lst.append(img_icon)
img_hps_lst.append(img_hps)
img_mask_lst.append(torch.tensor(img_mask[..., 0]))
landmark_lst.append(landmarks['body'])
# required image tensors / arrays
# img_icon (tensor): (-1, 1), [3,512,512]
# img_hps (tensor): (-2.11, 2.44), [3,224,224]
# img_np (array): (0, 255), [512,512,3]
# img_rembg (array): (0, 255), [512,512,4]
# img_mask (array): (0, 1), [512,512,1]
# img_crop (array): (0, 255), [512,512,4]
return_dict = {
"img_icon": torch.stack(img_icon_lst).float(), #[N, 3, res, res]
"img_crop": torch.stack(img_crop_lst).float(), #[N, 4, res, res]
"img_hps": torch.stack(img_hps_lst).float(), #[N, 3, res, res]
"img_raw": img_raw, #[1, 3, H, W]
"img_mask": torch.stack(img_mask_lst).float(), #[N, res, res]
"uncrop_param": uncrop_param,
"landmark": torch.stack(landmark_lst), #[N, 33, 4]
"hands_visibility": hands_visibility_lst,
}
img_pymafx = {}
if len(img_pymafx_lst) > 0:
for idx in range(len(img_pymafx_lst)):
for key in img_pymafx_lst[idx].keys():
if key not in img_pymafx.keys():
img_pymafx[key] = [img_pymafx_lst[idx][key]]
else:
img_pymafx[key] += [img_pymafx_lst[idx][key]]
for key in img_pymafx.keys():
img_pymafx[key] = torch.stack(img_pymafx[key]).float()
return_dict.update({"img_pymafx": img_pymafx})
return return_dict
def blend_rgb_norm(norms, data):
# norms [N, 3, res, res]
masks = (norms.sum(dim=1) != norms[0, :, 0, 0].sum()).float().unsqueeze(1)
norm_mask = F.interpolate(
torch.cat([norms, masks], dim=1).detach(),
size=data["uncrop_param"]["box_shape"],
mode="bilinear",
align_corners=False
)
final = data["img_raw"].type_as(norm_mask)
for idx in range(len(norms)):
norm_pred = (norm_mask[idx:idx + 1, :3, :, :] + 1.0) * 255.0 / 2.0
mask_pred = norm_mask[idx:idx + 1, 3:4, :, :].repeat(1, 3, 1, 1)
norm_ori = unwrap(norm_pred, data["uncrop_param"], idx)
mask_ori = unwrap(mask_pred, data["uncrop_param"], idx)
final = final * (1.0 - mask_ori) + norm_ori * mask_ori
return final.detach().cpu()
def unwrap(image, uncrop_param, idx):
device = image.device
img_square = warp_affine(
image,
torch.inverse(uncrop_param["M_crop"])[idx:idx + 1, :2].to(device),
uncrop_param["square_shape"],
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
img_ori = warp_affine(
img_square,
torch.inverse(uncrop_param["M_square"])[:, :2].to(device),
uncrop_param["ori_shape"],
mode='bilinear',
padding_mode='zeros',
align_corners=True
)
return img_ori
|