File size: 10,415 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import torch
import numpy as np
import cv2
import torch.nn.functional as F
from PIL import Image
def project(xyz, K, RT):
"""
xyz: [N, 3]
K: [3, 3]
RT: [3, 4]
"""
xyz = np.dot(RT[:, :3],xyz.T).T + RT[:, 3:].T
xyz = np.dot(K,xyz.T).T
xy = xyz[:, :2] + 256
return xy
def get_rays(H, W, K, R, T):
# w2c=np.concatenate([R,T],axis=1)
# w2c=np.concatenate([w2c,[[0,0,0,1]]],axis=0)
# c2w=np.linalg.inv(w2c)
# i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
# dirs = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
# # Rotate ray directions from camera frame to the world frame
# rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3,:3], -1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# # Translate camera frame's origin to the world frame. It is the origin of all rays.
# rays_o = np.broadcast_to(c2w[:3,-1], np.shape(rays_d))
# calculate the camera origin
rays_o = -np.dot(np.linalg.inv(R), T).ravel()+np.array([0,0,500])
# calculate the world coordinates of pixels
i, j = np.meshgrid(np.arange(W, dtype=np.float32),
np.arange(H, dtype=np.float32),
indexing='xy')
#xy1 = np.stack([i, j, np.ones_like(i)], axis=2)
pixel_camera = np.stack([(i-256)/K[0][0], -(j-256)/K[1][1], -np.ones_like(i)], -1)
pixel_world = np.dot(R.T, (pixel_camera - T.ravel()).reshape(-1,3).T).T.reshape(H,W,3)
# calculate the ray direction
rays_d = pixel_world - rays_o[None, None]
rays_d = rays_d / np.linalg.norm(rays_d, axis=2, keepdims=True)
rays_o = np.broadcast_to(rays_o, rays_d.shape)
return rays_o, rays_d
def get_bound_corners(bounds):
min_x, min_y, min_z = bounds[0]
max_x, max_y, max_z = bounds[1]
corners_3d = np.array([
[min_x, min_y, min_z],
[min_x, min_y, max_z],
[min_x, max_y, min_z],
[min_x, max_y, max_z],
[max_x, min_y, min_z],
[max_x, min_y, max_z],
[max_x, max_y, min_z],
[max_x, max_y, max_z],
])
return corners_3d
def get_bound_2d_mask(bounds, K, pose, H, W):
corners_3d = get_bound_corners(bounds)
corners_2d = project(corners_3d, K, pose)
corners_2d = np.round(corners_2d).astype(int)
mask = np.zeros((H, W), dtype=np.uint8)
cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 4]]], 1)
cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1)
cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1)
cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1)
return mask
def get_near_far(bounds, ray_o, ray_d):
"""calculate intersections with 3d bounding box"""
bounds = bounds + np.array([-0.01, 0.01])[:, None]
nominator = bounds[None] - ray_o[:, None]
# calculate the step of intersections at six planes of the 3d bounding box
d_intersect = (nominator / (ray_d[:, None] + 1e-9)).reshape(-1, 6)
# calculate the six interections
p_intersect = d_intersect[..., None] * ray_d[:, None] + ray_o[:, None]
# calculate the intersections located at the 3d bounding box
min_x, min_y, min_z, max_x, max_y, max_z = bounds.ravel()
eps = 1e-6
p_mask_at_box = (p_intersect[..., 0] >= (min_x - eps)) * \
(p_intersect[..., 0] <= (max_x + eps)) * \
(p_intersect[..., 1] >= (min_y - eps)) * \
(p_intersect[..., 1] <= (max_y + eps)) * \
(p_intersect[..., 2] >= (min_z - eps)) * \
(p_intersect[..., 2] <= (max_z + eps))
# obtain the intersections of rays which intersect exactly twice
mask_at_box = p_mask_at_box.sum(-1) == 2
p_intervals = p_intersect[mask_at_box][p_mask_at_box[mask_at_box]].reshape(
-1, 2, 3)
# calculate the step of intersections
ray_o = ray_o[mask_at_box]
ray_d = ray_d[mask_at_box]
norm_ray = np.linalg.norm(ray_d, axis=1)
d0 = np.linalg.norm(p_intervals[:, 0] - ray_o, axis=1) / norm_ray
d1 = np.linalg.norm(p_intervals[:, 1] - ray_o, axis=1) / norm_ray
near = np.minimum(d0, d1)
far = np.maximum(d0, d1)
return near, far, mask_at_box
def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, training = True):
H, W = img.shape[:2]
K[2,2]=1
ray_o, ray_d = get_rays(H, W, K, R, T) # world coordinate
pose = np.concatenate([R, T], axis=1)
bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) # 可视化bound mask
# # bound_mask [512,512]
# # save bound mask as image
# bound_mask = bound_mask.astype(np.uint8)
# bound_mask = bound_mask * 255
# bound_mask = Image.fromarray(bound_mask)
# msk_image=Image.fromarray(msk)
# bound_mask.save('bound_mask.png')
# msk_image.save('msk.png')
img[bound_mask != 1] = 0
#msk = msk * bound_mask
if training:
nsampled_rays = 0
# face_sample_ratio = cfg.face_sample_ratio
# body_sample_ratio = cfg.body_sample_ratio
body_sample_ratio = 0.8
ray_o_list = []
ray_d_list = []
rgb_list = []
body_mask_list = []
near_list = []
far_list = []
coord_list = []
mask_at_box_list = []
while nsampled_rays < nrays:
n_body = int((nrays - nsampled_rays) * body_sample_ratio)
n_rand = (nrays - nsampled_rays) - n_body
# sample rays on body
coord_body = np.argwhere(msk > 0)
coord_body = coord_body[np.random.randint(0, len(coord_body)-1, n_body)]
# sample rays in the bound mask
coord = np.argwhere(bound_mask > 0)
coord = coord[np.random.randint(0, len(coord), n_rand)]
coord = np.concatenate([coord_body, coord], axis=0)
ray_o_ = ray_o[coord[:, 0], coord[:, 1]]
ray_d_ = ray_d[coord[:, 0], coord[:, 1]]
rgb_ = img[coord[:, 0], coord[:, 1]]
body_mask_ = msk[coord[:, 0], coord[:, 1]]
near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_)
ray_o_list.append(ray_o_[mask_at_box])
ray_d_list.append(ray_d_[mask_at_box])
rgb_list.append(rgb_[mask_at_box])
body_mask_list.append(body_mask_[mask_at_box])
near_list.append(near_)
far_list.append(far_)
coord_list.append(coord[mask_at_box])
mask_at_box_list.append(mask_at_box[mask_at_box])
nsampled_rays += len(near_)
ray_o = np.concatenate(ray_o_list).astype(np.float32)
ray_d = np.concatenate(ray_d_list).astype(np.float32)
rgb = np.concatenate(rgb_list).astype(np.float32)
body_mask = (np.concatenate(body_mask_list) > 0).astype(np.float32)
near = np.concatenate(near_list).astype(np.float32)
far = np.concatenate(far_list).astype(np.float32)
coord = np.concatenate(coord_list)
mask_at_box = np.concatenate(mask_at_box_list)
else:
rgb = img.reshape(-1, 3).astype(np.float32)
body_mask = msk.reshape(-1).astype(np.float32)
ray_o = ray_o.reshape(-1, 3).astype(np.float32)
ray_d = ray_d.reshape(-1, 3).astype(np.float32)
near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d)
mask_at_box = np.logical_and(mask_at_box > 0, body_mask > 0)
near = near.astype(np.float32)
far = far.astype(np.float32)
rgb = rgb[mask_at_box]
body_mask = body_mask[mask_at_box]
ray_o = ray_o[mask_at_box]
ray_d = ray_d[mask_at_box]
coord = np.argwhere(mask_at_box.reshape(H, W) == 1)
return rgb, body_mask, ray_o, ray_d, near, far, coord, mask_at_box
def raw2outputs(raw, z_vals, rays_d, white_bkgd=False):
"""Transforms model's predictions to semantically meaningful values.
Args:
raw: [num_rays, num_samples along ray, 4]. Prediction from model.
z_vals: [num_rays, num_samples along ray]. Integration time.
rays_d: [num_rays, 3]. Direction of each ray.
Returns:
rgb_map: [num_rays, 3]. Estimated RGB color of a ray.
disp_map: [num_rays]. Disparity map. Inverse of depth map.
acc_map: [num_rays]. Sum of weights along each ray.
weights: [num_rays, num_samples]. Weights assigned to each sampled color.
depth_map: [num_rays]. Estimated distance to object.
"""
raw2alpha = lambda raw, dists, act_fn=F.relu: 1.-torch.exp(-act_fn(raw)*dists)
dists = z_vals[...,1:] - z_vals[...,:-1]
dists = torch.cat([dists, torch.Tensor([1e10]).expand(dists[...,:1].shape).to(z_vals.device)], -1) # [N_rays, N_samples]
dists = dists * torch.norm(rays_d[...,None,:], dim=-1)
rgb = raw[...,:3] # [N_rays, N_samples, 3]A
noise = 0.
alpha = raw2alpha(raw[...,3] + noise, dists) # [N_rays, N_samples]
# weights = alpha * tf.math.cumprod(1.-alpha + 1e-10, -1, exclusive=True)
weights = alpha * torch.cumprod(torch.cat([torch.ones((alpha.shape[0], 1)).to(z_vals.device), 1.-alpha + 1e-10], -1), -1)[:, :-1] #后面的cumprod是累乘函数,是求Ti这个积分项
rgb_map = torch.sum(weights[...,None] * rgb, -2) # [N_rays, 3] C and c
depth_map = torch.sum(weights * z_vals, -1)
disp_map = 1./torch.max(1e-10 * torch.ones_like(depth_map).to(z_vals.device), depth_map / torch.sum(weights, -1))
acc_map = torch.sum(weights, -1)
if white_bkgd:
rgb_map = rgb_map + (1.-acc_map[...,None])
return rgb_map, disp_map, acc_map, weights, depth_map
def get_wsampling_points(ray_o, ray_d, near, far):
"""
sample pts on rays
"""
N_samples=64
# calculate the steps for each ray
t_vals = torch.linspace(0., 1., steps=N_samples)
z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals
# get intervals between samples
mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1])
upper = torch.cat([mids, z_vals[..., -1:]], -1)
lower = torch.cat([z_vals[..., :1], mids], -1)
# stratified samples in those intervals
t_rand = torch.rand(z_vals.shape)
z_vals = lower + (upper - lower) * t_rand
pts = ray_o[ :, None] + ray_d[ :, None] * z_vals[..., None]
return pts, z_vals
|