File size: 13,307 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from pytorch3d.renderer import (
BlendParams,
blending,
look_at_view_transform,
FoVOrthographicCameras,
PointLights,
RasterizationSettings,
PointsRasterizationSettings,
PointsRenderer,
AlphaCompositor,
PointsRasterizer,
MeshRenderer,
MeshRasterizer,
SoftPhongShader,
SoftSilhouetteShader,
TexturesVertex,
)
from pytorch3d.renderer.mesh import TexturesVertex
from pytorch3d.structures import Meshes
from lib.dataset.mesh_util import get_visibility, get_visibility_color
import lib.common.render_utils as util
import torch
import numpy as np
from PIL import Image
from tqdm import tqdm
import os
import cv2
import math
from termcolor import colored
def image2vid(images, vid_path):
w, h = images[0].size
videodims = (w, h)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
video = cv2.VideoWriter(vid_path, fourcc, len(images) / 5.0, videodims)
for image in images:
video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR))
video.release()
def query_color(verts, faces, image, device, predicted_color):
"""query colors from points and image
Args:
verts ([B, 3]): [query verts]
faces ([M, 3]): [query faces]
image ([B, 3, H, W]): [full image]
Returns:
[np.float]: [return colors]
"""
verts = verts.float().to(device)
faces = faces.long().to(device)
predicted_color=predicted_color.to(device)
(xy, z) = verts.split([2, 1], dim=1)
visibility = get_visibility_color(xy, z, faces[:, [0, 2, 1]]).flatten()
uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2]
uv = uv * torch.tensor([1.0, -1.0]).type_as(uv)
colors = (torch.nn.functional.grid_sample(
image, uv, align_corners=True)[0, :, :, 0].permute(1, 0) +
1.0) * 0.5 * 255.0
colors[visibility == 0.0]=(predicted_color* 255.0)[visibility == 0.0]
return colors.detach().cpu()
class cleanShader(torch.nn.Module):
def __init__(self, device="cpu", cameras=None, blend_params=None):
super().__init__()
self.cameras = cameras
self.blend_params = blend_params if blend_params is not None else BlendParams(
)
def forward(self, fragments, meshes, **kwargs):
cameras = kwargs.get("cameras", self.cameras)
if cameras is None:
msg = "Cameras must be specified either at initialization \
or in the forward pass of TexturedSoftPhongShader"
raise ValueError(msg)
# get renderer output
blend_params = kwargs.get("blend_params", self.blend_params)
texels = meshes.sample_textures(fragments)
images = blending.softmax_rgb_blend(texels,
fragments,
blend_params,
znear=-256,
zfar=256)
return images
class Render:
def __init__(self, size=512, device=torch.device("cuda:0")):
self.device = device
self.size = size
# camera setting
self.dis = 100.0
self.scale = 100.0
self.mesh_y_center = 0.0
self.reload_cam()
self.type = "color"
self.mesh = None
self.deform_mesh = None
self.pcd = None
self.renderer = None
self.meshRas = None
self.uv_rasterizer = util.Pytorch3dRasterizer(self.size)
def reload_cam(self):
self.cam_pos = [
(0, self.mesh_y_center, self.dis),
(self.dis, self.mesh_y_center, 0),
(0, self.mesh_y_center, -self.dis),
(-self.dis, self.mesh_y_center, 0),
(0,self.mesh_y_center+self.dis,0),
(0,self.mesh_y_center-self.dis,0),
]
def get_camera(self, cam_id):
if cam_id == 4:
R, T = look_at_view_transform(
eye=[self.cam_pos[cam_id]],
at=((0, self.mesh_y_center, 0), ),
up=((0, 0, 1), ),
)
elif cam_id == 5:
R, T = look_at_view_transform(
eye=[self.cam_pos[cam_id]],
at=((0, self.mesh_y_center, 0), ),
up=((0, 0, 1), ),
)
else:
R, T = look_at_view_transform(
eye=[self.cam_pos[cam_id]],
at=((0, self.mesh_y_center, 0), ),
up=((0, 1, 0), ),
)
camera = FoVOrthographicCameras(
device=self.device,
R=R,
T=T,
znear=100.0,
zfar=-100.0,
max_y=100.0,
min_y=-100.0,
max_x=100.0,
min_x=-100.0,
scale_xyz=(self.scale * np.ones(3), ),
)
return camera
def init_renderer(self, camera, type="clean_mesh", bg="gray"):
if "mesh" in type:
# rasterizer
self.raster_settings_mesh = RasterizationSettings(
image_size=self.size,
blur_radius=np.log(1.0 / 1e-4) * 1e-7,
faces_per_pixel=30,
)
self.meshRas = MeshRasterizer(
cameras=camera, raster_settings=self.raster_settings_mesh)
if bg == "black":
blendparam = BlendParams(1e-4, 1e-4, (0.0, 0.0, 0.0))
elif bg == "white":
blendparam = BlendParams(1e-4, 1e-8, (1.0, 1.0, 1.0))
elif bg == "gray":
blendparam = BlendParams(1e-4, 1e-8, (0.5, 0.5, 0.5))
if type == "ori_mesh":
lights = PointLights(
device=self.device,
ambient_color=((0.8, 0.8, 0.8), ),
diffuse_color=((0.2, 0.2, 0.2), ),
specular_color=((0.0, 0.0, 0.0), ),
location=[[0.0, 200.0, 0.0]],
)
self.renderer = MeshRenderer(
rasterizer=self.meshRas,
shader=SoftPhongShader(
device=self.device,
cameras=camera,
lights=None,
blend_params=blendparam,
),
)
if type == "silhouette":
self.raster_settings_silhouette = RasterizationSettings(
image_size=self.size,
blur_radius=np.log(1.0 / 1e-4 - 1.0) * 5e-5,
faces_per_pixel=50,
cull_backfaces=True,
)
self.silhouetteRas = MeshRasterizer(
cameras=camera,
raster_settings=self.raster_settings_silhouette)
self.renderer = MeshRenderer(rasterizer=self.silhouetteRas,
shader=SoftSilhouetteShader())
if type == "pointcloud":
self.raster_settings_pcd = PointsRasterizationSettings(
image_size=self.size, radius=0.006, points_per_pixel=10)
self.pcdRas = PointsRasterizer(
cameras=camera, raster_settings=self.raster_settings_pcd)
self.renderer = PointsRenderer(
rasterizer=self.pcdRas,
compositor=AlphaCompositor(background_color=(0, 0, 0)),
)
if type == "clean_mesh":
self.renderer = MeshRenderer(
rasterizer=self.meshRas,
shader=cleanShader(device=self.device,
cameras=camera,
blend_params=blendparam),
)
def VF2Mesh(self, verts, faces, vertex_texture = None):
if not torch.is_tensor(verts):
verts = torch.tensor(verts)
if not torch.is_tensor(faces):
faces = torch.tensor(faces)
if verts.ndimension() == 2:
verts = verts.unsqueeze(0).float()
if faces.ndimension() == 2:
faces = faces.unsqueeze(0).long()
verts = verts.to(self.device)
faces = faces.to(self.device)
if vertex_texture is not None:
vertex_texture = vertex_texture.to(self.device)
mesh = Meshes(verts, faces).to(self.device)
if vertex_texture is None:
mesh.textures = TexturesVertex(
verts_features=(mesh.verts_normals_padded() + 1.0) * 0.5)#modify
else:
mesh.textures = TexturesVertex(
verts_features = vertex_texture.unsqueeze(0))#modify
return mesh
def load_meshes(self, verts, faces,offset=None, vertex_texture = None):
"""load mesh into the pytorch3d renderer
Args:
verts ([N,3]): verts
faces ([N,3]): faces
offset ([N,3]): offset
"""
if offset is not None:
verts = verts + offset
if isinstance(verts, list):
self.meshes = []
for V, F in zip(verts, faces):
if vertex_texture is None:
self.meshes.append(self.VF2Mesh(V, F))
else:
self.meshes.append(self.VF2Mesh(V, F, vertex_texture))
else:
if vertex_texture is None:
self.meshes = [self.VF2Mesh(verts, faces)]
else:
self.meshes = [self.VF2Mesh(verts, faces, vertex_texture)]
def get_depth_map(self, cam_ids=[0, 2]):
depth_maps = []
for cam_id in cam_ids:
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray")
fragments = self.meshRas(self.meshes[0])
depth_map = fragments.zbuf[..., 0].squeeze(0)
if cam_id == 2:
depth_map = torch.fliplr(depth_map)
depth_maps.append(depth_map)
return depth_maps
def get_rgb_image(self, cam_ids=[0, 2], bg='gray'):
images = []
for cam_id in range(len(self.cam_pos)):
if cam_id in cam_ids:
self.init_renderer(self.get_camera(cam_id), "clean_mesh", bg)
if len(cam_ids) == 4:
rendered_img = (self.renderer(
self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) -
0.5) * 2.0
else:
rendered_img = (self.renderer(
self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) -
0.5) * 2.0
if cam_id == 2 and len(cam_ids) == 2:
rendered_img = torch.flip(rendered_img, dims=[3])
images.append(rendered_img)
return images
def get_rendered_video(self, images, save_path):
self.cam_pos = []
for angle in range(360):
self.cam_pos.append((
100.0 * math.cos(np.pi / 180 * angle),
self.mesh_y_center,
100.0 * math.sin(np.pi / 180 * angle),
))
old_shape = np.array(images[0].shape[:2])
new_shape = np.around(
(self.size / old_shape[0]) * old_shape).astype(np.int)
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
video = cv2.VideoWriter(save_path, fourcc, 10,
(self.size * len(self.meshes) +
new_shape[1] * len(images), self.size))
pbar = tqdm(range(len(self.cam_pos)))
pbar.set_description(
colored(f"exporting video {os.path.basename(save_path)}...",
"blue"))
for cam_id in pbar:
self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray")
img_lst = [
np.array(Image.fromarray(img).resize(new_shape[::-1])).astype(
np.uint8)[:, :, [2, 1, 0]] for img in images
]
for mesh in self.meshes:
rendered_img = ((self.renderer(mesh)[0, :, :, :3] *
255.0).detach().cpu().numpy().astype(
np.uint8))
img_lst.append(rendered_img)
final_img = np.concatenate(img_lst, axis=1)
video.write(final_img)
video.release()
self.reload_cam()
def get_silhouette_image(self, cam_ids=[0, 2]):
images = []
for cam_id in range(len(self.cam_pos)):
if cam_id in cam_ids:
self.init_renderer(self.get_camera(cam_id), "silhouette")
rendered_img = self.renderer(self.meshes[0])[0:1, :, :, 3]
if cam_id == 2 and len(cam_ids) == 2:
rendered_img = torch.flip(rendered_img, dims=[2])
images.append(rendered_img)
return images
|