File size: 25,183 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from .seg3d_utils import (
create_grid3D,
plot_mask3D,
SmoothConv3D,
)
import torch
import torch.nn as nn
import numpy as np
import torch.nn.functional as F
import mcubes
from kaolin.ops.conversions import voxelgrids_to_trianglemeshes
import logging
logging.getLogger("lightning").setLevel(logging.ERROR)
class Seg3dLossless(nn.Module):
def __init__(self,
query_func,
b_min,
b_max,
resolutions,
channels=1,
balance_value=0.5,
align_corners=False,
visualize=False,
debug=False,
use_cuda_impl=False,
faster=False,
use_shadow=False,
**kwargs):
"""
align_corners: same with how you process gt. (grid_sample / interpolate)
"""
super().__init__()
self.query_func = query_func
self.register_buffer(
'b_min',
torch.tensor(b_min).float().unsqueeze(1)) # [bz, 1, 3]
self.register_buffer(
'b_max',
torch.tensor(b_max).float().unsqueeze(1)) # [bz, 1, 3]
# ti.init(arch=ti.cuda)
# self.mciso_taichi = MCISO(dim=3, N=resolutions[-1]-1)
if type(resolutions[0]) is int:
resolutions = torch.tensor([(res, res, res)
for res in resolutions])
else:
resolutions = torch.tensor(resolutions)
self.register_buffer('resolutions', resolutions)
self.batchsize = self.b_min.size(0)
assert self.batchsize == 1
self.balance_value = balance_value
self.channels = channels
assert self.channels == 1
self.align_corners = align_corners
self.visualize = visualize
self.debug = debug
self.use_cuda_impl = use_cuda_impl
self.faster = faster
self.use_shadow = use_shadow
for resolution in resolutions:
assert resolution[0] % 2 == 1 and resolution[1] % 2 == 1, \
f"resolution {resolution} need to be odd becuase of align_corner."
# init first resolution
init_coords = create_grid3D(0,
resolutions[-1] - 1,
steps=resolutions[0]) # [N, 3]
init_coords = init_coords.unsqueeze(0).repeat(self.batchsize, 1,
1) # [bz, N, 3]
self.register_buffer('init_coords', init_coords)
# some useful tensors
calculated = torch.zeros(
(self.resolutions[-1][2], self.resolutions[-1][1],
self.resolutions[-1][0]),
dtype=torch.bool)
self.register_buffer('calculated', calculated)
gird8_offsets = torch.stack(
torch.meshgrid([
torch.tensor([-1, 0, 1]),
torch.tensor([-1, 0, 1]),
torch.tensor([-1, 0, 1])
])).int().view(3, -1).t() # [27, 3]
self.register_buffer('gird8_offsets', gird8_offsets)
# smooth convs
self.smooth_conv3x3 = SmoothConv3D(in_channels=1,
out_channels=1,
kernel_size=3)
self.smooth_conv5x5 = SmoothConv3D(in_channels=1,
out_channels=1,
kernel_size=5)
self.smooth_conv7x7 = SmoothConv3D(in_channels=1,
out_channels=1,
kernel_size=7)
self.smooth_conv9x9 = SmoothConv3D(in_channels=1,
out_channels=1,
kernel_size=9)
def batch_eval(self, coords, **kwargs):
"""
coords: in the coordinates of last resolution
**kwargs: for query_func
"""
coords = coords.detach()
# normalize coords to fit in [b_min, b_max]
if self.align_corners:
coords2D = coords.float() / (self.resolutions[-1] - 1)
else:
step = 1.0 / self.resolutions[-1].float()
coords2D = coords.float() / self.resolutions[-1] + step / 2
coords2D = coords2D * (self.b_max - self.b_min) + self.b_min
# query function
occupancys = self.query_func(**kwargs, points=coords2D)
if type(occupancys) is list:
occupancys = torch.stack(occupancys) # [bz, C, N]
assert len(occupancys.size()) == 3, \
"query_func should return a occupancy with shape of [bz, C, N]"
return occupancys
def forward(self, **kwargs):
if self.faster:
return self._forward_faster(**kwargs)
else:
return self._forward(**kwargs)
def _forward_faster(self, **kwargs):
"""
In faster mode, we make following changes to exchange accuracy for speed:
1. no conflict checking: 4.88 fps -> 6.56 fps
2. smooth_conv9x9 ~ smooth_conv3x3 for different resolution
3. last step no examine
"""
final_W = self.resolutions[-1][0]
final_H = self.resolutions[-1][1]
final_D = self.resolutions[-1][2]
for resolution in self.resolutions:
W, H, D = resolution
stride = (self.resolutions[-1] - 1) / (resolution - 1)
# first step
if torch.equal(resolution, self.resolutions[0]):
coords = self.init_coords.clone() # torch.long
occupancys = self.batch_eval(coords, **kwargs)
occupancys = occupancys.view(self.batchsize, self.channels, D,
H, W)
if (occupancys > 0.5).sum() == 0:
# return F.interpolate(
# occupancys, size=(final_D, final_H, final_W),
# mode="linear", align_corners=True)
return None
if self.visualize:
self.plot(occupancys, coords, final_D, final_H, final_W)
with torch.no_grad():
coords_accum = coords / stride
# last step
elif torch.equal(resolution, self.resolutions[-1]):
with torch.no_grad():
# here true is correct!
valid = F.interpolate(
(occupancys > self.balance_value).float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
# here true is correct!
occupancys = F.interpolate(occupancys.float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
# is_boundary = (valid > 0.0) & (valid < 1.0)
is_boundary = valid == 0.5
# next steps
else:
coords_accum *= 2
with torch.no_grad():
# here true is correct!
valid = F.interpolate(
(occupancys > self.balance_value).float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
# here true is correct!
occupancys = F.interpolate(occupancys.float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
is_boundary = (valid > 0.0) & (valid < 1.0)
with torch.no_grad():
if torch.equal(resolution, self.resolutions[1]):
is_boundary = (self.smooth_conv9x9(is_boundary.float())
> 0)[0, 0]
elif torch.equal(resolution, self.resolutions[2]):
is_boundary = (self.smooth_conv7x7(is_boundary.float())
> 0)[0, 0]
else:
is_boundary = (self.smooth_conv3x3(is_boundary.float())
> 0)[0, 0]
coords_accum = coords_accum.long()
is_boundary[coords_accum[0, :, 2], coords_accum[0, :, 1],
coords_accum[0, :, 0]] = False
point_coords = is_boundary.permute(
2, 1, 0).nonzero(as_tuple=False).unsqueeze(0)
point_indices = (point_coords[:, :, 2] * H * W +
point_coords[:, :, 1] * W +
point_coords[:, :, 0])
R, C, D, H, W = occupancys.shape
# inferred value
coords = point_coords * stride
if coords.size(1) == 0:
continue
occupancys_topk = self.batch_eval(coords, **kwargs)
# put mask point predictions to the right places on the upsampled grid.
R, C, D, H, W = occupancys.shape
point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
2, point_indices, occupancys_topk).view(R, C, D, H, W))
with torch.no_grad():
voxels = coords / stride
coords_accum = torch.cat([voxels, coords_accum],
dim=1).unique(dim=1)
return occupancys[0, 0]
def _forward(self, **kwargs):
"""
output occupancy field would be:
(bz, C, res, res)
"""
final_W = self.resolutions[-1][0]
final_H = self.resolutions[-1][1]
final_D = self.resolutions[-1][2]
calculated = self.calculated.clone()
for resolution in self.resolutions:
W, H, D = resolution
stride = (self.resolutions[-1] - 1) / (resolution - 1)
if self.visualize:
this_stage_coords = []
# first step
if torch.equal(resolution, self.resolutions[0]):
coords = self.init_coords.clone() # torch.long
occupancys = self.batch_eval(coords, **kwargs)
occupancys = occupancys.view(self.batchsize, self.channels, D,
H, W)
if self.visualize:
self.plot(occupancys, coords, final_D, final_H, final_W)
with torch.no_grad():
coords_accum = coords / stride
calculated[coords[0, :, 2], coords[0, :, 1],
coords[0, :, 0]] = True
# next steps
else:
coords_accum *= 2
with torch.no_grad():
# here true is correct!
valid = F.interpolate(
(occupancys > self.balance_value).float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
# here true is correct!
occupancys = F.interpolate(occupancys.float(),
size=(D, H, W),
mode="trilinear",
align_corners=True)
is_boundary = (valid > 0.0) & (valid < 1.0)
with torch.no_grad():
# TODO
if self.use_shadow and torch.equal(resolution,
self.resolutions[-1]):
# larger z means smaller depth here
depth_res = resolution[2].item()
depth_index = torch.linspace(0,
depth_res - 1,
steps=depth_res).type_as(
occupancys.device)
depth_index_max = torch.max(
(occupancys > self.balance_value) *
(depth_index + 1),
dim=-1,
keepdim=True)[0] - 1
shadow = depth_index < depth_index_max
is_boundary[shadow] = False
is_boundary = is_boundary[0, 0]
else:
is_boundary = (self.smooth_conv3x3(is_boundary.float())
> 0)[0, 0]
# is_boundary = is_boundary[0, 0]
is_boundary[coords_accum[0, :, 2], coords_accum[0, :, 1],
coords_accum[0, :, 0]] = False
point_coords = is_boundary.permute(
2, 1, 0).nonzero(as_tuple=False).unsqueeze(0)
point_indices = (point_coords[:, :, 2] * H * W +
point_coords[:, :, 1] * W +
point_coords[:, :, 0])
R, C, D, H, W = occupancys.shape
# interpolated value
occupancys_interp = torch.gather(
occupancys.reshape(R, C, D * H * W), 2,
point_indices.unsqueeze(1))
# inferred value
coords = point_coords * stride
if coords.size(1) == 0:
continue
occupancys_topk = self.batch_eval(coords, **kwargs)
if self.visualize:
this_stage_coords.append(coords)
# put mask point predictions to the right places on the upsampled grid.
R, C, D, H, W = occupancys.shape
point_indices = point_indices.unsqueeze(1).expand(-1, C, -1)
occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
2, point_indices, occupancys_topk).view(R, C, D, H, W))
with torch.no_grad():
# conflicts
conflicts = ((occupancys_interp - self.balance_value) *
(occupancys_topk - self.balance_value) < 0)[0,
0]
if self.visualize:
self.plot(occupancys, coords, final_D, final_H,
final_W)
voxels = coords / stride
coords_accum = torch.cat([voxels, coords_accum],
dim=1).unique(dim=1)
calculated[coords[0, :, 2], coords[0, :, 1],
coords[0, :, 0]] = True
while conflicts.sum() > 0:
if self.use_shadow and torch.equal(resolution,
self.resolutions[-1]):
break
with torch.no_grad():
conflicts_coords = coords[0, conflicts, :]
if self.debug:
self.plot(occupancys,
conflicts_coords.unsqueeze(0),
final_D,
final_H,
final_W,
title='conflicts')
conflicts_boundary = (conflicts_coords.int() +
self.gird8_offsets.unsqueeze(1) *
stride.int()).reshape(
-1, 3).long().unique(dim=0)
conflicts_boundary[:, 0] = (
conflicts_boundary[:, 0].clamp(
0,
calculated.size(2) - 1))
conflicts_boundary[:, 1] = (
conflicts_boundary[:, 1].clamp(
0,
calculated.size(1) - 1))
conflicts_boundary[:, 2] = (
conflicts_boundary[:, 2].clamp(
0,
calculated.size(0) - 1))
coords = conflicts_boundary[calculated[
conflicts_boundary[:, 2], conflicts_boundary[:, 1],
conflicts_boundary[:, 0]] == False]
if self.debug:
self.plot(occupancys,
coords.unsqueeze(0),
final_D,
final_H,
final_W,
title='coords')
coords = coords.unsqueeze(0)
point_coords = coords / stride
point_indices = (point_coords[:, :, 2] * H * W +
point_coords[:, :, 1] * W +
point_coords[:, :, 0])
R, C, D, H, W = occupancys.shape
# interpolated value
occupancys_interp = torch.gather(
occupancys.reshape(R, C, D * H * W), 2,
point_indices.unsqueeze(1))
# inferred value
coords = point_coords * stride
if coords.size(1) == 0:
break
occupancys_topk = self.batch_eval(coords, **kwargs)
if self.visualize:
this_stage_coords.append(coords)
with torch.no_grad():
# conflicts
conflicts = ((occupancys_interp - self.balance_value) *
(occupancys_topk - self.balance_value) <
0)[0, 0]
# put mask point predictions to the right places on the upsampled grid.
point_indices = point_indices.unsqueeze(1).expand(
-1, C, -1)
occupancys = (occupancys.reshape(R, C, D * H * W).scatter_(
2, point_indices, occupancys_topk).view(R, C, D, H, W))
with torch.no_grad():
voxels = coords / stride
coords_accum = torch.cat([voxels, coords_accum],
dim=1).unique(dim=1)
calculated[coords[0, :, 2], coords[0, :, 1],
coords[0, :, 0]] = True
if self.visualize:
this_stage_coords = torch.cat(this_stage_coords, dim=1)
self.plot(occupancys, this_stage_coords, final_D, final_H,
final_W)
return occupancys[0, 0]
def plot(self,
occupancys,
coords,
final_D,
final_H,
final_W,
title='',
**kwargs):
final = F.interpolate(occupancys.float(),
size=(final_D, final_H, final_W),
mode="trilinear",
align_corners=True) # here true is correct!
x = coords[0, :, 0].to("cpu")
y = coords[0, :, 1].to("cpu")
z = coords[0, :, 2].to("cpu")
plot_mask3D(final[0, 0].to("cpu"), title, (x, y, z), **kwargs)
def find_vertices(self, sdf, direction="front"):
'''
- direction: "front" | "back" | "left" | "right"
'''
resolution = sdf.size(2)
if direction == "front":
pass
elif direction == "left":
sdf = sdf.permute(2, 1, 0)
elif direction == "back":
inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
sdf = sdf[inv_idx, :, :]
elif direction == "right":
inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
sdf = sdf[:, :, inv_idx]
sdf = sdf.permute(2, 1, 0)
inv_idx = torch.arange(sdf.size(2) - 1, -1, -1).long()
sdf = sdf[inv_idx, :, :]
sdf_all = sdf.permute(2, 1, 0)
# shadow
grad_v = (sdf_all > 0.5) * torch.linspace(
resolution, 1, steps=resolution).to(sdf.device)
grad_c = torch.ones_like(sdf_all) * torch.linspace(
0, resolution - 1, steps=resolution).to(sdf.device)
max_v, max_c = grad_v.max(dim=2)
shadow = grad_c > max_c.view(resolution, resolution, 1)
keep = (sdf_all > 0.5) & (~shadow)
p1 = keep.nonzero(as_tuple=False).t() # [3, N]
p2 = p1.clone() # z
p2[2, :] = (p2[2, :] - 2).clamp(0, resolution)
p3 = p1.clone() # y
p3[1, :] = (p3[1, :] - 2).clamp(0, resolution)
p4 = p1.clone() # x
p4[0, :] = (p4[0, :] - 2).clamp(0, resolution)
v1 = sdf_all[p1[0, :], p1[1, :], p1[2, :]]
v2 = sdf_all[p2[0, :], p2[1, :], p2[2, :]]
v3 = sdf_all[p3[0, :], p3[1, :], p3[2, :]]
v4 = sdf_all[p4[0, :], p4[1, :], p4[2, :]]
X = p1[0, :].long() # [N,]
Y = p1[1, :].long() # [N,]
Z = p2[2, :].float() * (0.5 - v1) / (v2 - v1) + \
p1[2, :].float() * (v2 - 0.5) / (v2 - v1) # [N,]
Z = Z.clamp(0, resolution)
# normal
norm_z = v2 - v1
norm_y = v3 - v1
norm_x = v4 - v1
# print (v2.min(dim=0)[0], v2.max(dim=0)[0], v3.min(dim=0)[0], v3.max(dim=0)[0])
norm = torch.stack([norm_x, norm_y, norm_z], dim=1)
norm = norm / torch.norm(norm, p=2, dim=1, keepdim=True)
return X, Y, Z, norm
def render_normal(self, resolution, X, Y, Z, norm):
image = torch.ones((1, 3, resolution, resolution),
dtype=torch.float32).to(norm.device)
color = (norm + 1) / 2.0
color = color.clamp(0, 1)
image[0, :, Y, X] = color.t()
return image
def display(self, sdf):
# render
X, Y, Z, norm = self.find_vertices(sdf, direction="front")
image1 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
X, Y, Z, norm = self.find_vertices(sdf, direction="left")
image2 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
X, Y, Z, norm = self.find_vertices(sdf, direction="right")
image3 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
X, Y, Z, norm = self.find_vertices(sdf, direction="back")
image4 = self.render_normal(self.resolutions[-1, -1], X, Y, Z, norm)
image = torch.cat([image1, image2, image3, image4], axis=3)
image = image.detach().cpu().numpy()[0].transpose(1, 2, 0) * 255.0
return np.uint8(image)
def export_mesh(self, occupancys):
final = occupancys[1:, 1:, 1:].contiguous()
if final.shape[0] > 256:
# for voxelgrid larger than 256^3, the required GPU memory will be > 9GB
# thus we use CPU marching_cube to avoid "CUDA out of memory"
occu_arr = final.detach().cpu().numpy() # non-smooth surface
# occu_arr = mcubes.smooth(final.detach().cpu().numpy()) # smooth surface
vertices, triangles = mcubes.marching_cubes(
occu_arr, self.balance_value)
verts = torch.as_tensor(vertices[:, [2, 1, 0]])
faces = torch.as_tensor(triangles.astype(np.longlong),
dtype=torch.long)[:, [0, 2, 1]]
else:
torch.cuda.empty_cache()
vertices, triangles = voxelgrids_to_trianglemeshes(
final.unsqueeze(0))
verts = vertices[0][:, [2, 1, 0]].cpu()
faces = triangles[0][:, [0, 2, 1]].cpu()
return verts, faces
|