File size: 835 Bytes
879b2af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c592b6f
879b2af
ed3a6e2
4049ae9
879b2af
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import torch

model = torch.hub.load('pytorch/vision:v0.6.0', 'resnet18', pretrained=True).eval()

import requests
from torchvision import transforms

# Download human-readable labels for ImageNet.
response = requests.get("https://git.io/JJkYN")
labels = response.text.split("\n")

def predict(inp):
  inp = transforms.ToTensor()(inp).unsqueeze(0)
  with torch.no_grad():
    prediction = torch.nn.functional.softmax(model(inp)[0], dim=0)
    confidences = {labels[i]: float(prediction[i]) for i in range(1000)}    
  return confidences

import gradio as gr

gr.Interface(fn=predict, 
             inputs=gr.inputs.Image(type="pil"),
             outputs=gr.outputs.Label(num_top_classes=3),
             examples=["lion.jpg", "cheetah.jpg"],
             theme="default",
             css=".footer{display:none !important}").launch()