File size: 6,367 Bytes
2acc3a1
 
 
df03cac
 
86df91a
4c628f2
2acc3a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from queue import Queue
from transformers.generation.streamers import BaseStreamer
from typing import Optional
from parler_tts import ParlerTTSForConditionalGeneration
import numpy as np
import math
import torch


class ParlerTTSStreamer(BaseStreamer):
    def __init__(
        self,
        model: ParlerTTSForConditionalGeneration,
        device: Optional[str] = None,
        play_steps: Optional[int] = 10,
        stride: Optional[int] = None,
        timeout: Optional[float] = None,
    ):
        """
        Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
        useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
        Gradio demo).
        Parameters:
            model (`ParlerTTSForConditionalGeneration`):
                The Parler-TTS model used to generate the audio waveform.
            device (`str`, *optional*):
                The torch device on which to run the computation. If `None`, will default to the device of the model.
            play_steps (`int`, *optional*, defaults to 10):
                The number of generation steps with which to return the generated audio array. Using fewer steps will
                mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
                should be tuned to your device and latency requirements.
            stride (`int`, *optional*):
                The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
                the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
                play_steps // 6 in the audio space.
            timeout (`int`, *optional*):
                The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
                in `.generate()`, when it is called in a separate thread.
        """
        self.decoder = model.decoder
        self.audio_encoder = model.audio_encoder
        self.generation_config = model.generation_config
        self.device = device if device is not None else model.device

        # variables used in the streaming process
        self.play_steps = play_steps
        if stride is not None:
            self.stride = stride
        else:
            hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
            self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
        self.token_cache = None
        self.to_yield = 0

        # varibles used in the thread process
        self.audio_queue = Queue()
        self.stop_signal = None
        self.timeout = timeout

    def apply_delay_pattern_mask(self, input_ids):
        # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
        _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
            input_ids[:, :1],
            bos_token_id=self.generation_config.bos_token_id,
            pad_token_id=self.generation_config.decoder_start_token_id,
            max_length=input_ids.shape[-1],
        )
        # apply the pattern mask to the input ids
        input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)

        # revert the pattern delay mask by filtering the pad token id
        mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
        input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
        # append the frame dimension back to the audio codes
        input_ids = input_ids[None, ...]

        # send the input_ids to the correct device
        input_ids = input_ids.to(self.audio_encoder.device)

        decode_sequentially = (
            self.generation_config.bos_token_id in input_ids
            or self.generation_config.pad_token_id in input_ids
            or self.generation_config.eos_token_id in input_ids
        )
        if not decode_sequentially:
            output_values = self.audio_encoder.decode(
                input_ids,
                audio_scales=[None],
            )
        else:
            sample = input_ids[:, 0]
            sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
            sample = sample[:, :, sample_mask]
            output_values = self.audio_encoder.decode(sample[None, ...], [None])

        audio_values = output_values.audio_values[0, 0]
        return audio_values.cpu().float().numpy()

    def put(self, value):
        batch_size = value.shape[0] // self.decoder.num_codebooks
        if batch_size > 1:
            raise ValueError("ParlerTTSStreamer only supports batch size 1")

        if self.token_cache is None:
            self.token_cache = value
        else:
            self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)

        if self.token_cache.shape[-1] % self.play_steps == 0:
            audio_values = self.apply_delay_pattern_mask(self.token_cache)
            self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
            self.to_yield += len(audio_values) - self.to_yield - self.stride

    def end(self):
        """Flushes any remaining cache and appends the stop symbol."""
        if self.token_cache is not None:
            audio_values = self.apply_delay_pattern_mask(self.token_cache)
        else:
            audio_values = np.zeros(self.to_yield)

        self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)

    def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
        """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
        self.audio_queue.put(audio, timeout=self.timeout)
        if stream_end:
            self.audio_queue.put(self.stop_signal, timeout=self.timeout)

    def __iter__(self):
        return self

    def __next__(self):
        value = self.audio_queue.get(timeout=self.timeout)
        if not isinstance(value, np.ndarray) and value == self.stop_signal:
            raise StopIteration()
        else:
            return value