File size: 5,417 Bytes
31588a8
 
 
 
 
 
 
 
 
 
 
 
 
61770d3
31588a8
 
 
 
61770d3
31588a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca82104
31588a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61770d3
2a9a15a
 
 
 
 
61770d3
 
 
 
 
 
 
 
 
 
 
 
 
31588a8
61770d3
 
2a9a15a
61770d3
 
 
 
 
 
ac1bcc0
 
 
 
 
2a9a15a
ac1bcc0
 
 
 
 
 
 
 
 
 
 
 
 
 
31588a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61770d3
31588a8
 
 
 
 
 
 
 
 
ac1bcc0
 
 
 
 
 
31588a8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import gradio as gr
import pandas as pd
import numpy as np

def update_dataframe():
    regular_df = pd.DataFrame(np.random.randint(1, 10, size=(5, 5)), columns=pd.Index([str(i) for i in range(5)]))
    wide_df = pd.DataFrame([
        [5, 22, 91, 17, 73, 38, 84, 46, 65, 10, 155, 122, 11, 144, 133],
        [81, 42, 13, 97, 33, 77, 59, 100, 29, 61, 213, 195, 142, 118, 127],
        [37, 71, 63, 102, 28, 94, 19, 55, 88, 44, 116, 139, 122, 150, 147],
        [104, 52, 49, 26, 83, 67, 31, 92, 79, 18, 241, 115, 159, 123, 137],
        [16, 95, 74, 68, 43, 101, 27, 85, 39, 57, 129, 148, 132, 111, 156]
    ], columns=pd.Index([f"col_{i}" for i in range(15)]))
    return regular_df, wide_df

def clear_dataframes():
    regular_empty_df = pd.DataFrame([], columns=pd.Index([str(i) for i in range(5)]))
    wide_empty_df = pd.DataFrame([], columns=pd.Index([f"col_{i}" for i in range(15)]))
    return regular_empty_df, wide_empty_df

def increment_select_counter(evt: gr.SelectData, count):
    count_val = 1 if count is None else count + 1
    return count_val, evt.index, evt.value

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=1):
            initial_regular_df = pd.DataFrame(np.zeros((5, 5), dtype=int), columns=pd.Index([str(i) for i in range(5)]))

            df = gr.Dataframe(
                value=initial_regular_df,
                interactive=True,
                label="Interactive Dataframe",
                show_label=True,
                elem_id="dataframe",
                show_search="filter",
                show_copy_button=True,
                show_row_numbers=True,
                static_columns=[4]
            )

        with gr.Column(scale=1):
            initial_wide_df = pd.DataFrame(np.zeros((5, 15), dtype=int), columns=pd.Index([f"col_{i}" for i in range(15)]))

            df_view = gr.Dataframe(
                value=initial_wide_df,
                interactive=False,
                label="Non-Interactive View (Scroll Horizontally)",
                show_label=True,
                show_search="search",
                elem_id="non-interactive-dataframe",
                show_copy_button=True,
                show_row_numbers=True,
                show_fullscreen_button=True,
            )

    tall_df_value = [
        ["DeepSeek Coder", 79.3, True],
        ["Llama 3.3", 68.9, True],
        ["Qwen 2.5", 61.9, True],
        ["Gemma 2", 59.5, False],
        ["GPT 2", 18.3, False],
    ]

    def get_display_value(values):
        display_values = []
        medals = ["🥇", "🥈", "🥉"]
        for i, row in enumerate(values):
            if i < 3:
                display_values.append([f"{medals[i]} {row[0]}", row[1]])
            else:
                display_values.append([row[0], row[1]])
        return display_values

    display_value = get_display_value(tall_df_value)

    tall_df_value = {
        "data": tall_df_value,
        "headers": ["Model", "% Correct (LeetCode Hard)", "Is Open Source"],
        "metadata": {
            "display_value": display_value
        }
    }

    with gr.Row():
        with gr.Column():
            df_tall = gr.Dataframe(
                value=tall_df_value,
                interactive=False,
                label="Tall Dataframe (Scroll Vertically)",
                datatype=["str", "number", "bool"],
                max_height=200,
                show_label=True,
                elem_id="dataframe_tall",
                show_copy_button=True,
                show_row_numbers=True,
                show_search="search",
            )

            df_tall_selected_cell_index = gr.Textbox(
                label="Tall dataframe selected cell index", elem_id="tall_selected_cell_index"
            )
            df_tall_selected_cell_value = gr.Textbox(
                label="Tall dataframe selected cell value", elem_id="tall_selected_cell_value"
            )

    with gr.Row():
        with gr.Column():
            update_btn = gr.Button("Update dataframe", elem_id="update_btn")
            clear_btn = gr.Button("Clear dataframe", elem_id="clear_btn")

    with gr.Row():
        change_events = gr.Number(
            value=0, label="Change events", elem_id="change_events"
        )
        input_events = gr.Number(value=0, label="Input events", elem_id="input_events")
        select_events = gr.Number(
            value=0, label="Select events", elem_id="select_events"
        )

    with gr.Row():
        selected_cell_index = gr.Textbox(
            label="Selected cell index", elem_id="selected_cell_index"
        )
        selected_cell_value = gr.Textbox(
            label="Selected cell value", elem_id="selected_cell_value"
        )

    update_btn.click(fn=update_dataframe, outputs=[df, df_view])
    clear_btn.click(fn=clear_dataframes, outputs=[df, df_view, df_tall])
    df.change(fn=lambda x: x + 1, inputs=[change_events], outputs=[change_events])
    df.input(fn=lambda x: x + 1, inputs=[input_events], outputs=[input_events])
    df.select(
        fn=increment_select_counter,
        inputs=[select_events],
        outputs=[select_events, selected_cell_index, selected_cell_value],
    )

    df_tall.select(
        fn=increment_select_counter,
        inputs=[select_events],
        outputs=[select_events, df_tall_selected_cell_index, df_tall_selected_cell_value],
    )

if __name__ == "__main__":
    demo.launch()