File size: 19,469 Bytes
d5175d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
#!/usr/bin/env python3
import argparse
import os
import unittest
from inspect import currentframe, getframeinfo
import numpy as np
import torch
from examples.speech_recognition.data.data_utils import lengths_to_encoder_padding_mask
from fairseq.data import data_utils as fairseq_data_utils
from fairseq.data.dictionary import Dictionary
from fairseq.models import (
BaseFairseqModel,
FairseqDecoder,
FairseqEncoder,
FairseqEncoderDecoderModel,
FairseqEncoderModel,
FairseqModel,
)
from fairseq.tasks.fairseq_task import LegacyFairseqTask
DEFAULT_TEST_VOCAB_SIZE = 100
# ///////////////////////////////////////////////////////////////////////////
# utility function to setup dummy dict/task/input
# ///////////////////////////////////////////////////////////////////////////
def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
dummy_dict = Dictionary()
# add dummy symbol to satisfy vocab size
for id, _ in enumerate(range(vocab_size)):
dummy_dict.add_symbol("{}".format(id), 1000)
return dummy_dict
class DummyTask(LegacyFairseqTask):
def __init__(self, args):
super().__init__(args)
self.dictionary = get_dummy_dictionary()
if getattr(self.args, "ctc", False):
self.dictionary.add_symbol("<ctc_blank>")
self.tgt_dict = self.dictionary
@property
def target_dictionary(self):
return self.dictionary
def get_dummy_task_and_parser():
"""
to build a fariseq model, we need some dummy parse and task. This function
is used to create dummy task and parser to faciliate model/criterion test
Note: we use FbSpeechRecognitionTask as the dummy task. You may want
to use other task by providing another function
"""
parser = argparse.ArgumentParser(
description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
)
DummyTask.add_args(parser)
args = parser.parse_args([])
task = DummyTask.setup_task(args)
return task, parser
def get_dummy_input(T=100, D=80, B=5, K=100):
forward_input = {}
# T max sequence length
# D feature vector dimension
# B batch size
# K target dimension size
feature = torch.randn(B, T, D)
# this (B, T, D) layout is just a convention, you can override it by
# write your own _prepare_forward_input function
src_lengths = torch.from_numpy(
np.random.randint(low=1, high=T, size=B, dtype=np.int64)
)
src_lengths[0] = T # make sure the maximum length matches
prev_output_tokens = []
for b in range(B):
token_length = np.random.randint(low=1, high=src_lengths[b].item() + 1)
tokens = np.random.randint(low=0, high=K, size=token_length, dtype=np.int64)
prev_output_tokens.append(torch.from_numpy(tokens))
prev_output_tokens = fairseq_data_utils.collate_tokens(
prev_output_tokens,
pad_idx=1,
eos_idx=2,
left_pad=False,
move_eos_to_beginning=False,
)
src_lengths, sorted_order = src_lengths.sort(descending=True)
forward_input["src_tokens"] = feature.index_select(0, sorted_order)
forward_input["src_lengths"] = src_lengths
forward_input["prev_output_tokens"] = prev_output_tokens
return forward_input
def get_dummy_encoder_output(encoder_out_shape=(100, 80, 5)):
"""
This only provides an example to generate dummy encoder output
"""
(T, B, D) = encoder_out_shape
encoder_out = {}
encoder_out["encoder_out"] = torch.from_numpy(
np.random.randn(*encoder_out_shape).astype(np.float32)
)
seq_lengths = torch.from_numpy(np.random.randint(low=1, high=T, size=B))
# some dummy mask
encoder_out["encoder_padding_mask"] = torch.arange(T).view(1, T).expand(
B, -1
) >= seq_lengths.view(B, 1).expand(-1, T)
encoder_out["encoder_padding_mask"].t_()
# encoer_padding_mask is (T, B) tensor, with (t, b)-th element indicate
# whether encoder_out[t, b] is valid (=0) or not (=1)
return encoder_out
def _current_postion_info():
cf = currentframe()
frameinfo = " (at {}:{})".format(
os.path.basename(getframeinfo(cf).filename), cf.f_back.f_lineno
)
return frameinfo
def check_encoder_output(encoder_output, batch_size=None):
"""we expect encoder_output to be a dict with the following
key/value pairs:
- encoder_out: a Torch.Tensor
- encoder_padding_mask: a binary Torch.Tensor
"""
if not isinstance(encoder_output, dict):
msg = (
"FairseqEncoderModel.forward(...) must be a dict" + _current_postion_info()
)
return False, msg
if "encoder_out" not in encoder_output:
msg = (
"FairseqEncoderModel.forward(...) must contain encoder_out"
+ _current_postion_info()
)
return False, msg
if "encoder_padding_mask" not in encoder_output:
msg = (
"FairseqEncoderModel.forward(...) must contain encoder_padding_mask"
+ _current_postion_info()
)
return False, msg
if not isinstance(encoder_output["encoder_out"], torch.Tensor):
msg = "encoder_out must be a torch.Tensor" + _current_postion_info()
return False, msg
if encoder_output["encoder_out"].dtype != torch.float32:
msg = "encoder_out must have float32 dtype" + _current_postion_info()
return False, msg
mask = encoder_output["encoder_padding_mask"]
if mask is not None:
if not isinstance(mask, torch.Tensor):
msg = (
"encoder_padding_mask must be a torch.Tensor" + _current_postion_info()
)
return False, msg
if mask.dtype != torch.uint8 and (
not hasattr(torch, "bool") or mask.dtype != torch.bool
):
msg = (
"encoder_padding_mask must have dtype of uint8"
+ _current_postion_info()
)
return False, msg
if mask.dim() != 2:
msg = (
"we expect encoder_padding_mask to be a 2-d tensor, in shape (T, B)"
+ _current_postion_info()
)
return False, msg
if batch_size is not None and mask.size(1) != batch_size:
msg = (
"we expect encoder_padding_mask to be a 2-d tensor, with size(1)"
+ " being the batch size"
+ _current_postion_info()
)
return False, msg
return True, None
def check_decoder_output(decoder_output):
"""we expect output from a decoder is a tuple with the following constraint:
- the first element is a torch.Tensor
- the second element can be anything (reserved for future use)
"""
if not isinstance(decoder_output, tuple):
msg = "FariseqDecoder output must be a tuple" + _current_postion_info()
return False, msg
if len(decoder_output) != 2:
msg = "FairseqDecoder output must be 2-elem tuple" + _current_postion_info()
return False, msg
if not isinstance(decoder_output[0], torch.Tensor):
msg = (
"FariseqDecoder output[0] must be a torch.Tensor" + _current_postion_info()
)
return False, msg
return True, None
# ///////////////////////////////////////////////////////////////////////////
# Base Test class
# ///////////////////////////////////////////////////////////////////////////
class TestBaseFairseqModelBase(unittest.TestCase):
"""
This class is used to facilitate writing unittest for any class derived from
`BaseFairseqModel`.
"""
@classmethod
def setUpClass(cls):
if cls is TestBaseFairseqModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model):
self.assertTrue(isinstance(model, BaseFairseqModel))
self.model = model
def setupInput(self):
pass
def setUp(self):
self.model = None
self.forward_input = None
pass
class TestFairseqEncoderDecoderModelBase(TestBaseFairseqModelBase):
"""
base code to test FairseqEncoderDecoderModel (formally known as
`FairseqModel`) must be derived from this base class
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderDecoderModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model_cls, extra_args_setters=None):
self.assertTrue(
issubclass(model_cls, (FairseqEncoderDecoderModel, FairseqModel)),
msg="This class only tests for FairseqModel subclasses",
)
task, parser = get_dummy_task_and_parser()
model_cls.add_args(parser)
args = parser.parse_args([])
if extra_args_setters is not None:
for args_setter in extra_args_setters:
args_setter(args)
model = model_cls.build_model(args, task)
self.model = model
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
def setUp(self):
super().setUp()
def test_forward(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
# for FairseqEncoderDecoderModel, forward returns a tuple of two
# elements, the first one is a Torch.Tensor
succ, msg = check_decoder_output(forward_output)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
def test_get_normalized_probs(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
logprob = self.model.get_normalized_probs(forward_output, log_probs=True)
prob = self.model.get_normalized_probs(forward_output, log_probs=False)
# in order for different models/criterion to play with each other
# we need to know whether the logprob or prob output is batch_first
# or not. We assume an additional attribute will be attached to logprob
# or prob. If you find your code failed here, simply override
# FairseqModel.get_normalized_probs, see example at
# https://fburl.com/batch_first_example
self.assertTrue(hasattr(logprob, "batch_first"))
self.assertTrue(hasattr(prob, "batch_first"))
self.assertTrue(torch.is_tensor(logprob))
self.assertTrue(torch.is_tensor(prob))
class TestFairseqEncoderModelBase(TestBaseFairseqModelBase):
"""
base class to test FairseqEncoderModel
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderModelBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpModel(self, model_cls, extra_args_setters=None):
self.assertTrue(
issubclass(model_cls, FairseqEncoderModel),
msg="This class is only used for testing FairseqEncoderModel",
)
task, parser = get_dummy_task_and_parser()
model_cls.add_args(parser)
args = parser.parse_args([])
if extra_args_setters is not None:
for args_setter in extra_args_setters:
args_setter(args)
model = model_cls.build_model(args, task)
self.model = model
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
# get_dummy_input() is originally for s2s, here we delete extra dict
# items, so it can be used for EncoderModel / Encoder as well
self.forward_input.pop("prev_output_tokens", None)
def setUp(self):
super().setUp()
def test_forward(self):
if self.forward_input and self.model:
bsz = self.forward_input["src_tokens"].size(0)
forward_output = self.model.forward(**self.forward_input)
# we expect forward_output to be a dict with the following
# key/value pairs:
# - encoder_out: a Torch.Tensor
# - encoder_padding_mask: a binary Torch.Tensor
succ, msg = check_encoder_output(forward_output, batch_size=bsz)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
def test_get_normalized_probs(self):
if self.model and self.forward_input:
forward_output = self.model.forward(**self.forward_input)
logprob = self.model.get_normalized_probs(forward_output, log_probs=True)
prob = self.model.get_normalized_probs(forward_output, log_probs=False)
# in order for different models/criterion to play with each other
# we need to know whether the logprob or prob output is batch_first
# or not. We assume an additional attribute will be attached to logprob
# or prob. If you find your code failed here, simply override
# FairseqModel.get_normalized_probs, see example at
# https://fburl.com/batch_first_example
self.assertTrue(hasattr(logprob, "batch_first"))
self.assertTrue(hasattr(prob, "batch_first"))
self.assertTrue(torch.is_tensor(logprob))
self.assertTrue(torch.is_tensor(prob))
class TestFairseqEncoderBase(unittest.TestCase):
"""
base class to test FairseqEncoder
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqEncoderBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpEncoder(self, encoder):
self.assertTrue(
isinstance(encoder, FairseqEncoder),
msg="This class is only used for test FairseqEncoder",
)
self.encoder = encoder
def setUpInput(self, input=None):
self.forward_input = get_dummy_input() if input is None else input
# get_dummy_input() is originally for s2s, here we delete extra dict
# items, so it can be used for EncoderModel / Encoder as well
self.forward_input.pop("prev_output_tokens", None)
def setUp(self):
self.encoder = None
self.forward_input = None
def test_forward(self):
if self.encoder and self.forward_input:
bsz = self.forward_input["src_tokens"].size(0)
forward_output = self.encoder.forward(**self.forward_input)
succ, msg = check_encoder_output(forward_output, batch_size=bsz)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_output = forward_output
class TestFairseqDecoderBase(unittest.TestCase):
"""
base class to test FairseqDecoder
"""
@classmethod
def setUpClass(cls):
if cls is TestFairseqDecoderBase:
raise unittest.SkipTest("Skipping test case in base")
super().setUpClass()
def setUpDecoder(self, decoder):
self.assertTrue(
isinstance(decoder, FairseqDecoder),
msg="This class is only used for test FairseqDecoder",
)
self.decoder = decoder
def setUpInput(self, input=None):
self.forward_input = get_dummy_encoder_output() if input is None else input
def setUpPrevOutputTokens(self, tokens=None):
if tokens is None:
self.encoder_input = get_dummy_input()
self.prev_output_tokens = self.encoder_input["prev_output_tokens"]
else:
self.prev_output_tokens = tokens
def setUp(self):
self.decoder = None
self.forward_input = None
self.prev_output_tokens = None
def test_forward(self):
if (
self.decoder is not None
and self.forward_input is not None
and self.prev_output_tokens is not None
):
forward_output = self.decoder.forward(
prev_output_tokens=self.prev_output_tokens,
encoder_out=self.forward_input,
)
succ, msg = check_decoder_output(forward_output)
if not succ:
self.assertTrue(succ, msg=msg)
self.forward_input = forward_output
class DummyEncoderModel(FairseqEncoderModel):
def __init__(self, encoder):
super().__init__(encoder)
@classmethod
def build_model(cls, args, task):
return cls(DummyEncoder())
def get_logits(self, net_output):
# Inverse of sigmoid to use with BinaryCrossEntropyWithLogitsCriterion as
# F.binary_cross_entropy_with_logits combines sigmoid and CE
return torch.log(
torch.div(net_output["encoder_out"], 1 - net_output["encoder_out"])
)
def get_normalized_probs(self, net_output, log_probs, sample=None):
lprobs = super().get_normalized_probs(net_output, log_probs, sample=sample)
lprobs.batch_first = True
return lprobs
class DummyEncoder(FairseqEncoder):
def __init__(self):
super().__init__(None)
def forward(self, src_tokens, src_lengths):
mask, max_len = lengths_to_encoder_padding_mask(src_lengths)
return {"encoder_out": src_tokens, "encoder_padding_mask": mask}
class CrossEntropyCriterionTestBase(unittest.TestCase):
@classmethod
def setUpClass(cls):
if cls is CrossEntropyCriterionTestBase:
raise unittest.SkipTest("Skipping base class test case")
super().setUpClass()
def setUpArgs(self):
args = argparse.Namespace()
args.sentence_avg = False
args.threshold = 0.1 # to use with BinaryCrossEntropyWithLogitsCriterion
return args
def setUp(self):
args = self.setUpArgs()
self.model = DummyEncoderModel(encoder=DummyEncoder())
self.criterion = self.criterion_cls.build_criterion(args, task=DummyTask(args))
def get_src_tokens(self, correct_prediction, aggregate):
"""
correct_prediction: True if the net_output (src_tokens) should
predict the correct target
aggregate: True if the criterion expects net_output (src_tokens)
aggregated across time axis
"""
predicted_idx = 0 if correct_prediction else 1
if aggregate:
src_tokens = torch.zeros((2, 2), dtype=torch.float)
for b in range(2):
src_tokens[b][predicted_idx] = 1.0
else:
src_tokens = torch.zeros((2, 10, 2), dtype=torch.float)
for b in range(2):
for t in range(10):
src_tokens[b][t][predicted_idx] = 1.0
return src_tokens
def get_target(self, soft_target):
if soft_target:
target = torch.zeros((2, 2), dtype=torch.float)
for b in range(2):
target[b][0] = 1.0
else:
target = torch.zeros((2, 10), dtype=torch.long)
return target
def get_test_sample(self, correct, soft_target, aggregate):
src_tokens = self.get_src_tokens(correct, aggregate)
target = self.get_target(soft_target)
L = src_tokens.size(1)
return {
"net_input": {"src_tokens": src_tokens, "src_lengths": torch.tensor([L])},
"target": target,
"ntokens": src_tokens.size(0) * src_tokens.size(1),
}
|