File size: 4,277 Bytes
d5175d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import logging
import math
import os
import sys

import fairseq
import soundfile as sf
import torch
import torch.nn.functional as F
import tqdm
from npy_append_array import NpyAppendArray

logging.basicConfig(
    format="%(asctime)s | %(levelname)s | %(name)s | %(message)s",
    datefmt="%Y-%m-%d %H:%M:%S",
    level=os.environ.get("LOGLEVEL", "INFO").upper(),
    stream=sys.stdout,
)
logger = logging.getLogger("dump_hubert_feature")


class HubertFeatureReader(object):
    def __init__(self, ckpt_path, layer, max_chunk=1600000):
        (
            model,
            cfg,
            task,
        ) = fairseq.checkpoint_utils.load_model_ensemble_and_task([ckpt_path])
        self.model = model[0].eval().cuda()
        self.task = task
        self.layer = layer
        self.max_chunk = max_chunk
        logger.info(f"TASK CONFIG:\n{self.task.cfg}")
        logger.info(f" max_chunk = {self.max_chunk}")

    def read_audio(self, path, ref_len=None):
        wav, sr = sf.read(path)
        assert sr == self.task.cfg.sample_rate, sr
        if wav.ndim == 2:
            wav = wav.mean(-1)
        assert wav.ndim == 1, wav.ndim
        if ref_len is not None and abs(ref_len - len(wav)) > 160:
            logging.warning(f"ref {ref_len} != read {len(wav)} ({path})")
        return wav

    def get_feats(self, path, ref_len=None):
        x = self.read_audio(path, ref_len)
        with torch.no_grad():
            x = torch.from_numpy(x).float().cuda()
            if self.task.cfg.normalize:
                x = F.layer_norm(x, x.shape)
            x = x.view(1, -1)

            feat = []
            for start in range(0, x.size(1), self.max_chunk):
                x_chunk = x[:, start: start + self.max_chunk]
                feat_chunk, _ = self.model.extract_features(
                    source=x_chunk,
                    padding_mask=None,
                    mask=False,
                    output_layer=self.layer,
                )
                feat.append(feat_chunk)
            return torch.cat(feat, 1).squeeze(0)


def get_path_iterator(tsv, nshard, rank):
    with open(tsv, "r") as f:
        root = f.readline().rstrip()
        lines = [line.rstrip() for line in f]
        tot = len(lines)
        shard_size = math.ceil(tot / nshard)
        start, end = rank * shard_size, min((rank + 1) * shard_size, tot)
        assert start < end, "start={start}, end={end}"
        logger.info(
            f"rank {rank} of {nshard}, process {end-start} "
            f"({start}-{end}) out of {tot}"
        )

        lines = lines[start:end]

        def iterate():
            for line in lines:
                subpath, nsample = line.split("\t")
                yield f"{root}/{subpath}", int(nsample)

        return iterate, len(lines)


def dump_feature(
    tsv_dir, split, ckpt_path, layer, nshard, rank, feat_dir, max_chunk
):
    reader = HubertFeatureReader(ckpt_path, layer, max_chunk)
    generator, num = get_path_iterator(f"{tsv_dir}/{split}.tsv", nshard, rank)
    iterator = generator()

    feat_path = f"{feat_dir}/{split}_{rank}_{nshard}.npy"
    leng_path = f"{feat_dir}/{split}_{rank}_{nshard}.len"

    os.makedirs(feat_dir, exist_ok=True)
    if os.path.exists(feat_path):
        os.remove(feat_path)

    feat_f = NpyAppendArray(feat_path)
    with open(leng_path, "w") as leng_f:
        for path, nsample in tqdm.tqdm(iterator, total=num):
            feat = reader.get_feats(path, nsample)
            feat_f.append(feat.cpu().numpy())
            leng_f.write(f"{len(feat)}\n")
    logger.info("finished successfully")


if __name__ == "__main__":
    import argparse

    parser = argparse.ArgumentParser()
    parser.add_argument("tsv_dir")
    parser.add_argument("split")
    parser.add_argument("ckpt_path")
    parser.add_argument("layer", type=int)
    parser.add_argument("nshard", type=int)
    parser.add_argument("rank", type=int)
    parser.add_argument("feat_dir")
    parser.add_argument("--max_chunk", type=int, default=1600000)
    args = parser.parse_args()
    logger.info(args)

    dump_feature(**vars(args))