File size: 5,608 Bytes
6dd60d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import gradio as gr
from datetime import datetime
import os
import random
import string
import pandas as pd

import numpy as np
import matplotlib.pyplot as plt



def random_plot():
    start_year = 2020
    x = np.arange(start_year, start_year + 5)
    year_count = x.shape[0]
    plt_format = "-"
    fig = plt.figure()
    ax = fig.add_subplot(111)
    series = np.arange(0, year_count, dtype=float)
    series = series**2
    series += np.random.rand(year_count)
    ax.plot(x, series, plt_format)
    return fig


images = [
    "https://images.unsplash.com/photo-1507003211169-0a1dd7228f2d?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=387&q=80",
    "https://images.unsplash.com/photo-1554151228-14d9def656e4?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=386&q=80",
    "https://images.unsplash.com/photo-1542909168-82c3e7fdca5c?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxzZWFyY2h8MXx8aHVtYW4lMjBmYWNlfGVufDB8fDB8fA%3D%3D&w=1000&q=80",
]
file_dir = os.path.join(os.path.dirname(__file__), "..", "kitchen_sink", "files")
model3d_dir = os.path.join(os.path.dirname(__file__), "..", "model3D", "files")
highlighted_text_output_1 = [
    {
        "entity": "I-LOC",
        "score": 0.9988978,
        "index": 2,
        "word": "Chicago",
        "start": 5,
        "end": 12,
    },
    {
        "entity": "I-MISC",
        "score": 0.9958592,
        "index": 5,
        "word": "Pakistani",
        "start": 22,
        "end": 31,
    },
]
highlighted_text_output_2 = [
    {
        "entity": "I-LOC",
        "score": 0.9988978,
        "index": 2,
        "word": "Chicago",
        "start": 5,
        "end": 12,
    },
    {
        "entity": "I-LOC",
        "score": 0.9958592,
        "index": 5,
        "word": "Pakistan",
        "start": 22,
        "end": 30,
    },
]

highlighted_text = "Does Chicago have any Pakistani restaurants"


def random_model3d():
    model_3d = random.choice(
        [os.path.join(model3d_dir, model) for model in os.listdir(model3d_dir) if model != "source.txt"]
    )
    return model_3d



components = [
    gr.Textbox(value=lambda: datetime.now(), label="Current Time"),
    gr.Number(value=lambda: random.random(), label="Random Percentage"),
    gr.Slider(minimum=0, maximum=100, randomize=True, label="Slider with randomize"),
    gr.Slider(
        minimum=0,
        maximum=1,
        value=lambda: random.random(),
        label="Slider with value func",
    ),
    gr.Checkbox(value=lambda: random.random() > 0.5, label="Random Checkbox"),
    gr.CheckboxGroup(
        choices=["a", "b", "c", "d"],
        value=lambda: random.choice(["a", "b", "c", "d"]),
        label="Random CheckboxGroup",
    ),
    gr.Radio(
        choices=list(string.ascii_lowercase),
        value=lambda: random.choice(string.ascii_lowercase),
    ),
    gr.Dropdown(
        choices=["a", "b", "c", "d", "e"],
        value=lambda: random.choice(["a", "b", "c"]),
    ),
    gr.Image(
        value=lambda: random.choice(images)
    ),
    gr.Video(value=lambda: os.path.join(file_dir, "world.mp4")),
    gr.Audio(value=lambda: os.path.join(file_dir, "cantina.wav")),
    gr.File(
        value=lambda: random.choice(
            [os.path.join(file_dir, img) for img in os.listdir(file_dir)]
        )
    ),
    gr.Dataframe(
        value=lambda: pd.DataFrame({"random_number_rows": range(5)}, columns=["one", "two", "three"])
    ),
    gr.ColorPicker(value=lambda: random.choice(["#000000", "#ff0000", "#0000FF"])),
    gr.Label(value=lambda: random.choice(["Pedestrian", "Car", "Cyclist"])),
    gr.HighlightedText(
        value=lambda: random.choice(
            [
                {"text": highlighted_text, "entities": highlighted_text_output_1},
                {"text": highlighted_text, "entities": highlighted_text_output_2},
            ]
        ),
    ),
    gr.JSON(value=lambda: random.choice([{"a": 1}, {"b": 2}])),
    gr.HTML(
        value=lambda: random.choice(
            [
                '<p style="color:red;">I am red</p>',
                '<p style="color:blue;">I am blue</p>',
            ]
        )
    ),
    gr.Gallery(
        value=lambda: images
    ),
    gr.Model3D(value=random_model3d),
    gr.Plot(value=random_plot),
    gr.Markdown(value=lambda: f"### {random.choice(['Hello', 'Hi', 'Goodbye!'])}"),
]


def evaluate_values(*args):
    are_false = []
    for a in args:
        if isinstance(a, (pd.DataFrame, np.ndarray)):
            are_false.append(not a.any().any())
        elif isinstance(a, str) and a.startswith("#"):
            are_false.append(a == "#000000")
        else:
            are_false.append(not a)
    return all(are_false)


with gr.Blocks() as demo:
    for i, component in enumerate(components):
        component.label = f"component_{str(i).zfill(2)}"
        component.render()
    clear = gr.ClearButton(value="Clear", components=components)
    result = gr.Textbox(label="Are all cleared?")
    hide = gr.Button(value="Hide")
    reveal = gr.Button(value="Reveal")
    clear_button_and_components = components + [clear]
    hide.click(
        lambda: [c.__class__(visible=False) for c in clear_button_and_components],
        inputs=[],
        outputs=clear_button_and_components
    )
    reveal.click(
        lambda: [c.__class__(visible=True) for c in clear_button_and_components],
        inputs=[],
        outputs=clear_button_and_components
    )
    get_value = gr.Button(value="Get Values")
    get_value.click(evaluate_values, components, result)


if __name__ == "__main__":
    demo.launch()