File size: 7,466 Bytes
db0d36e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import gradio as gr
import pandas as pd
from pathlib import Path

abs_path = Path(__file__).parent.absolute()

df = pd.read_json(str(abs_path / "assets/leaderboard_data.json"))
invisible_df = df.copy()


COLS = [
    "T",
    "Model",
    "Average ⬆️",
    "ARC",
    "HellaSwag",
    "MMLU",
    "TruthfulQA",
    "Winogrande",
    "GSM8K",
    "Type",
    "Architecture",
    "Precision",
    "Merged",
    "Hub License",
    "#Params (B)",
    "Hub ❤️",
    "Model sha",
    "model_name_for_query",
]
ON_LOAD_COLS = [
    "T",
    "Model",
    "Average ⬆️",
    "ARC",
    "HellaSwag",
    "MMLU",
    "TruthfulQA",
    "Winogrande",
    "GSM8K",
    "model_name_for_query",
]
TYPES = [
    "str",
    "markdown",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "number",
    "str",
    "str",
    "str",
    "str",
    "bool",
    "str",
    "number",
    "number",
    "bool",
    "str",
    "bool",
    "bool",
    "str",
]
NUMERIC_INTERVALS = {
    "?": pd.Interval(-1, 0, closed="right"),
    "~1.5": pd.Interval(0, 2, closed="right"),
    "~3": pd.Interval(2, 4, closed="right"),
    "~7": pd.Interval(4, 9, closed="right"),
    "~13": pd.Interval(9, 20, closed="right"),
    "~35": pd.Interval(20, 45, closed="right"),
    "~60": pd.Interval(45, 70, closed="right"),
    "70+": pd.Interval(70, 10000, closed="right"),
}
MODEL_TYPE = [str(s) for s in df["T"].unique()]
Precision = [str(s) for s in df["Precision"].unique()]


# Searching and filtering
def update_table(
    hidden_df: pd.DataFrame,
    columns: list,
    type_query: list,
    precision_query: str,
    size_query: list,
    query: str,
):
    filtered_df = filter_models(hidden_df, type_query, size_query, precision_query)
    filtered_df = filter_queries(query, filtered_df)
    df = select_columns(filtered_df, columns)
    return df


def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
    return df[(df["model_name_for_query"].str.contains(query, case=False))]


def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
    # We use COLS to maintain sorting
    filtered_df = df[[c for c in COLS if c in df.columns and c in columns]]
    return filtered_df


def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
    final_df = []
    if query != "":
        queries = [q.strip() for q in query.split(";")]
        for _q in queries:
            _q = _q.strip()
            if _q != "":
                temp_filtered_df = search_table(filtered_df, _q)
                if len(temp_filtered_df) > 0:
                    final_df.append(temp_filtered_df)
        if len(final_df) > 0:
            filtered_df = pd.concat(final_df)
            filtered_df = filtered_df.drop_duplicates(
                subset=["Model", "Precision", "Model sha"]
            )

    return filtered_df


def filter_models(
    df: pd.DataFrame,
    type_query: list,
    size_query: list,
    precision_query: list,
) -> pd.DataFrame:
    # Show all models
    filtered_df = df

    type_emoji = [t[0] for t in type_query]
    filtered_df = filtered_df.loc[df["T"].isin(type_emoji)]
    filtered_df = filtered_df.loc[df["Precision"].isin(precision_query + ["None"])]

    numeric_interval = pd.IntervalIndex(
        sorted([NUMERIC_INTERVALS[s] for s in size_query])
    )
    params_column = pd.to_numeric(df["#Params (B)"], errors="coerce")
    mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
    filtered_df = filtered_df.loc[mask]

    return filtered_df


demo = gr.Blocks(css=str(abs_path / "assets/leaderboard_data.json"))
with demo:
    gr.Markdown("""Test Space of the LLM Leaderboard""", elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        search_bar = gr.Textbox(
                            placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
                            show_label=False,
                            elem_id="search-bar",
                        )
                    with gr.Row():
                        shown_columns = gr.CheckboxGroup(
                            choices=COLS,
                            value=ON_LOAD_COLS,
                            label="Select columns to show",
                            elem_id="column-select",
                            interactive=True,
                        )
                with gr.Column(min_width=320):
                    filter_columns_type = gr.CheckboxGroup(
                        label="Model types",
                        choices=MODEL_TYPE,
                        value=MODEL_TYPE,
                        interactive=True,
                        elem_id="filter-columns-type",
                    )
                    filter_columns_precision = gr.CheckboxGroup(
                        label="Precision",
                        choices=Precision,
                        value=Precision,
                        interactive=True,
                        elem_id="filter-columns-precision",
                    )
                    filter_columns_size = gr.CheckboxGroup(
                        label="Model sizes (in billions of parameters)",
                        choices=list(NUMERIC_INTERVALS.keys()),
                        value=list(NUMERIC_INTERVALS.keys()),
                        interactive=True,
                        elem_id="filter-columns-size",
                    )

            leaderboard_table = gr.components.Dataframe(
                value=df[ON_LOAD_COLS],
                headers=ON_LOAD_COLS,
                datatype=TYPES,
                elem_id="leaderboard-table",
                interactive=False,
                visible=True,
                column_widths=["2%", "33%"],
            )

            # Dummy leaderboard for handling the case when the user uses backspace key
            hidden_leaderboard_table_for_search = gr.components.Dataframe(
                value=invisible_df[COLS],
                headers=COLS,
                datatype=TYPES,
                visible=False,
            )
            search_bar.submit(
                update_table,
                [
                    hidden_leaderboard_table_for_search,
                    shown_columns,
                    filter_columns_type,
                    filter_columns_precision,
                    filter_columns_size,
                    search_bar,
                ],
                leaderboard_table,
            )
            for selector in [
                shown_columns,
                filter_columns_type,
                filter_columns_precision,
                filter_columns_size,
            ]:
                selector.change(
                    update_table,
                    [
                        hidden_leaderboard_table_for_search,
                        shown_columns,
                        filter_columns_type,
                        filter_columns_precision,
                        filter_columns_size,
                        search_bar,
                    ],
                    leaderboard_table,
                    queue=True,
                )


if __name__ == "__main__":
    demo.queue(default_concurrency_limit=40).launch()